
Integer Programming For Optimal Right Hand Guitar Fingerings

Mohit Dubey, Matthew Skarha, and Isabel Taylor
Department of Mathematics,

Oberlin College, Oberlin, OH 44074, USA
mdubey, mskarha, or itaylor@oberlin.edu

Abstract
Integer Programming is a mathematical technique that has been used to solve linear optimization prob-
lems in a wide variety of fields. Here, we present a method for using an integer program to find optimal
right hand fingerings, which could be applied generally to notated classical or fingerstyle guitar music.
Our approach uses soft constraints formulated to represent “proper” classical guitar technique and min-
imizes a sum of penalties incurred by violating these constraints. Finally, we used the Gurobi Optimizer
to implement our method for a short piece of music (extracted from the 1921 piece “La Catedral” by
Agustin Barrios).

Introduction

Integer Programming (IP) problems, the family of linear programming problems in which variables
are constrained to take on integer values, crop up in fields as far reaching as production planning,
scheduling, and the playing of musical instruments. Given an objective function to minimize or
maximize, integer or binary valued variables, and a set of constraints on those variables corre-
sponding to physical or temporal limitations, optimal solutions to these problems can be found
using a variety of algorithms (i.e. branch-and-bound or cutting planes). Playing a musical instru-
ment, while seemingly less concrete than problems such as scheduling or production planning, can
be easily formulated as an IP. In this case, the objective is to play a piece of music using the most
efficient technique possible with variables corresponding to the use of specific fingers to play each
note and constraints based upon human anatomy and the music itself. Previous work has used IP
methods to find optimal fingerings for piano music [1] as well as optimal left-hand fingerings for
the guitar [2] [3]. However, the problem of finding optimal right hand fingerings for classical or
fingerstyle guitar music has yet to be explored. In this paper, we formulate a basic IP to solve for
optimal right hand fingerings for notated guitar music based on the principles of “proper” right
hand technique.

Right Hand Technique

Throughout history, the instrument known as the guitar has been used to play a wide variety of
music around the world including, but not limited to, European classical music, flamenco, jazz,
and fingerstyle. In this paper, we focus on the case of European classical music, fingerstyle, and
other guitar music in which a pick (or ”plectrum”) is not used, giving particular emphasis to the
techniques developed to play music notated in Western staff notation. In these styles, the guitar is

played using the right hand thumb, index, middle and ring fingers but not the pinky. While there
have been many differing approaches to playing (famously, Ida Presti [4] and Alexandre Lagoya
[5]) that have evolved over the years, at present there is a notion of “proper right hand technique”
which can be thought of as a set of rules that describe the physically optimal way of using the right
hand to play the guitar. These rules can be summarized as follows:

Rule 1: Do Not Repeat Fingers
It is never optimal to use the same right hand finger to play two notes in a row. This is due to

the nature of the finger’s motion away from the string, which requires it to reset before it can play
again. It is far more efficient to use another finger to pluck the next note, giving time for the initially
used finger to relax. This is especially true for passages of long successive notes, particularly fast
scalar passages.

Rule 2: Thumb Plays the Bassline
Based on the way the right hand naturally rests on the guitar (Figure 1), there is a natural cor-

respondence between the thumb and the (spatially speaking) top three strings (usually tuned E, A,
and D) of the guitar 1. Due to this fact, it is far more optimal to use the thumb to play the lowest
frequency pitches of a given passage of music, which is usually called the bassline.

Rule 3: Fingers Stay in Natural Position
In a similar manner, the natural resting position of the right hand provides a natural corre-

spondence between the index, middle and ring fingers and the bottom three strings of the guitar
respectively. While it is considered optimal to try to maintain this natural correspondence, this is
often considered a more relaxed constraint, as it must often be broken in order to accomplish mu-
sical goals such as playing scales or tremolo sections in which two or three right hand fingers must
be used on one or two strings in alternation.

Rule 4: Avoid Backwards Crossings
The fourth rule governing proper right hand technique pertains to the alternation of fingers. In

order to maintain the natural resting position of the hand, it is natural for fingers further right on the
right hand to play strings lower down (vertically) on the guitar. It is therefore more optimal to play
a sequence of treble strings that get progressively lower (i.e. G, B, e) with the index, middle then
ring finger (in that order). Violation of this directionality principle is referred to as a “backwards
cross”, as it requires the fingers to cross behind one another in order to played vertically higher
strings that are outside of the natural resting position of the hand.

Rule 5: Avoid Ring-Middle-Ring Alternation
The final rule governing proper right hand technique pertains to the alternation of specifically

the middle and ring fingers. Due to the shared tendons between the middle and ring fingers, it is far
more difficult to alternate them in succession than the index and middle or index and ring fingers.
Therefore, it is highly non-optimal to play with the ring and middle fingers in alternation.

1Throughout this paper we will refer to strings in terms of their vertical position, rather than their relative pitch
“height” in order to avoid confusion.

Figure 1 : The natural resting position of the right hand for playing guitar using
“proper” technique. The thumb can also equivalently be placed on any of the other
three top (bass) strings.

Mathematical Model

In our model we will assume that the left-hand fingering for the guitar has already been solved for.
In this case, a piece of notated music can be reduced to a sequence of string numbers, si, that need
to be played in a certain order by a sequence of fingers, fi. We choose to number the strings of
the guitar in ascending order vertically and the fingers of the right hand in ascending order from
right-to-left (Figure 2), such that the numbers are aligned for the natural resting position of the hand
(i.e. finger 1, the ring finger, naturally rests on string 1, the high e string).

Figure 2 : Diagrams of the chosen assignment of fingers and strings to numerical values.

In summary:

• si is the string played on timestep i, where 1 ≤ si ≤ 6

• xi is the number of the finger played on timestep i, where 1 ≤ fi ≤ 4

In addition to these, we define ”helper” variables as follows:

• ti is a binary variable which is 1 iff fi = 4, 0 otherwise

• pBC
i is a binary penalty variable equal to 1 if we violate rule 4 by beginning a Backwards

Crossing at step i, 0 otherwise

• pTi is a binary penalty variable equal to 1 if we violate rule 2 by playing the treble notes with
the Thumb, 0 otherwise

• pFi is a penalty variable for violating rule 3, keeping Fingers in natural position, where 0≤ pFi .
It is equivalent to the difference between the string being played and the finger playing it.

And one helper piece of data:

• bi is binary data equal to 1 if si ≤ 3, 0 otherwise

Integer Program

A few notes: we express certain values with absolute value signs. We recognize this is not linear,
and respond that these can be linearized with well-known techniques. For the sake of clarity, we
leave them as they are.

min
n∑

i=1

pBC
i + pTi +

1

2
pFi (1)

subject to:

bi ∗ fi < 4 + pTi ∀ i (2)

|fi − si| − (ti ∗M) ≤ pFi ∀ i (3)

− (si − si+1)(fi − fi+1) ≤M ∗ pBC
i ∀ i < n− 1 (4)

fi + fi+1 + fi+2 ≥ 5∀ i < n− 2 (5)

|fi − fi+1| ≥ 1 ∀ i < n− 1 (6)

Now, an explanation of the formulation.

(1) Objective Function To explain the objective function, I must also explain the theory
behind our constraints. Guitar fingering is more an art-form than a strict rule adherence, and oc-
casionally the need to break the rules we have previously outlined comes in handy, or is even
necessary. Traditionally in integer programming, constraints are ”hard,” and to break a rule implies
that an optimal solution is not possible. In our case, we wanted ”soft” constraints - we don’t want
to break them, but it is still valid if we do occasionally. To mitigate this, we introduce the idea of
penalty variables that get activated when we violate a constraint. This objective function is attempt-
ing to minimize the number of times we violate our soft constraints. Also note the weight of 1/2 in
front of pFi , which biases the program towards breaking rule 3 over the others.

(2) ”Thumb Plays Bassline” Constraint To encourage the thumb to play the bassline,
we penalize the program only when the thumb fingers play the treble strings. To do so, we have
the ”activation” data bi to trigger when we play on treble strings. Then, we simply want this to be
less than 4 (aka played by the non-thumb fingers). If it is 4, meaning we play it with the thumb, we
impose a penalty.

(3) “Fingers Stay in Natural Position” Constraint To encourage the fingers to stay in
their ”natural” position, we essentially want to minimize the difference between the string played
on time-step i and the finger that plays it (since in ”natural” position the fingers’ numbers align
with the strings’) We do this by looking at the difference between the finger and the string, and
equating that to the penalty. Since we don’t want to penalize when the thumb plays, we add in the
−(ti ∗M), where M is some large constant. This means when the thumb is used, this constraint is
always satisfied, and no penalty will be enacted.

(4) “Avoid Backwards Crossings” Constraint A backwards crossing happens when,
when given two different strings, you use fingers in the opposite order. In other words, if the differ-
ence between string i and string i+1 is positive, a backwards crossing happens when the difference
between finger i and finger i+1 is negative, and vice versa. Since the strings are data, we can
multiply the two differences (si − si+1)(fi − fi+1). Then, we want this value to be positive (mean-
ing no backwards crossing) and need to penalize it when it is negative (there exists a backwards
crossing). To do so, we use an ”activation” penalty variable, pBC

i . When the value is negative, we
want to activate the penalty. We do this by associating the penalty with a large constant M. When
(si − si+1)(fi − fi+1) is positive (aka no backwards crossings), we negate it, so it is a negative
value and less than or equal to 0. When the value is negative (a backwards crossing exists), the
negated value is positive, forcing us to activate the penalty to maintain the constraint. A few notes
for this constraint: we do not care when the value of (si − si+1)(fi − fi+1) is zero, as this would
only happen when either string i and i+i are the same (and a backwards crossing is impossible), or
when we use the same finger twice, which we prevent using another constraint.

(5) “Avoid Ring-Middle-Ring Alteration” Constraint This constraint is fairly self-
explanatory. Since we are limiting the smallest possible triplet of 1-2-1 fingerings, we simply force
all solutions to have sequences of fingerings greater than or equal to 5, cutting off this pattern as a
possibility.

(6) “Do Not Repeat Fingers” Constraint Once again, this constraint is fairly self-
explanatory. For every time-step i and i+i, we want fi 6= fi+1 and so we ensure the difference
between fi and fi+1 is at least 1, once again using the absolute value as shorthand notation. We
encode this as a hard constraint as we never want this to happen.

Implementation and Results

We implemented our model in Gurobi, using eight measure-long excerpts from “La Catedral” by
Agustin Barrios as the input. Currently, our model is only optimized for scale-based guitar music
where each timestep contains exactly one note of equal length. Barrios’ “La Catedral” satisfies
these conditions while also providing a wide range of musical approaches. Additionally, we used
a “La Catedral” transcription by classical guitarist and teacher Daniel F. Savarese that included
tablature and fingerings as the optimal version against which to test our model [6].

For each measure, the fi correspond to the fingering of each note, as returned by our model,
and the f ∗

i correspond to the optimal fingering of each note, as notated by Savarese.

Figure 3 : Results of implementing our model in Gurobi compared with optimal finger-
ings according to professional classical guitarist Daniel F. Savarese for eight selected
measures in Barrios’ “La Catedral”.

The eight measures sum to a total of 68 individual notes against which we tested our model.
Our model correctly identified the fingering for 53 of those notes, corresponding to a 78% accuracy
rate. Additionally, several of the fingerings that our model incorrectly identified are individual
preferences that are made by the musician (e.g. 3-2-3 vs. 2-1-2). Thus, the fingerings produced by
our model are largely acceptable and would only need a small amount of human revision.

Conclusions

We have shown a technique for producing optimal right hand guitar fingerings for scale-based fin-
gerstyle European classical music. Our integer program takes a sequence of strings to be played as
input and produces the optimal right hand fingerings for each note as output. This has the poten-
tial to significantly decrease the amount of time classical guitarists spend on right hand fingerings,
which is often a trivial, yet arduous task.

Further work on this topic would expand our research to include chord-based music as well as
music with varying note durations.

References

[1] M. Hart, R. Bosch, and E. Tsai. Finding optimal piano fingerings. The UMAP (Undergraduate
Mathematics and Its Applications) Journal, 21:167177, 2000.

[2] A. Radisavljevic, P. Driessen. Path Difference Learning for Guitar Fingering Problem. Pro-
ceedings of the International Computer Music Conference. Miami, USA, 2004.

[3] B. Tahon. Fingers to frets - A Mathematical Approach Optimizing Finger Assignment for
Guitar Tablature. Master’s Thesis, KU Leuvin. 2017.

[4] C. Mowbray. Ida Presti as a Solo Performer and Composer of Works for Solo Guitar. Doctor
of Musical Art’s Thesis, Shenandoah Conservatory. 2012.

[5] A. Kozinn. Alexandre Lagoya Dies at 70; Innovative Classical Guitarist. The New York
Times. 1999.

[6] D. F. Savarese. La Catedral by Agustin Barrios. https://www.savarese.org/music/
LaCatedral.html. Last accessed: December 20, 2018.

Appendix

Here we include the Python code used to generate the Gurobi LP file. The s dictionary at the
beginning of the code is where one would input the sequence of strings to be played.

i m p o r t s y s
s y s . s t d o u t = open (” c o i n s . l p ” , ”w”)
s = {

1 : 2 ,
2 : 5 ,
3 : 3 ,
4 : 4 ,
5 : 5 ,
6 : 4 ,
7 : 3 ,
8 : 2

}
b = {}
f o r i i n r a n g e (1 , l e n (s) + 1) :

i f s [i]<=3:
b [i] = 1

e l s e :
b [i] = 0

p r i n t (” Minimize ”)
f o r i i n r a n g e (1 , l e n (s) + 1) : # o b j e c t i v e f u n c t i o n

p r i n t (”\ t 0 F” + s t r (i) + ” +”)
f o r i i n r a n g e (1 , l e n (s) + 1) : # o b j e c t i v e f u n c t i o n

i f i != l e n (s) :
p r i n t (”\ tPBC”+ s t r (i)+” + PT”+ s t r (i)+” + . 5 PF”+ s t r (i)+
” + PB” + s t r (i) + ” +”)

https://www.savarese.org/music/LaCatedral.html
https://www.savarese.org/music/LaCatedral.html

e l s e :
p r i n t (”\ tPBC”+ s t r (i)+” + PT”+ s t r (i)+” + . 5 PF”+ s t r (i)+
” + PB” + s t r (i))

p r i n t (” S u b j e c t To ”)
f o r i i n r a n g e (1 , l e n (s) + 1) :

i f b [i] == 1 :
p r i n t (”\ tF ”+ s t r (i)+” + PT”+ s t r (i)+” <= 3 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ tF ”+ s t r (i)+” − 100 T” + s t r (i) + ” − PF” + s t r (i) +
” <= ” + s t r (s [i]))

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ t−F”+ s t r (i) + ” − 100 T” + s t r (i) + ” − PF” +
s t r (i) + ” <= ”+ s t r (− s [i]))

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ tF ”+ s t r (i)+” − T” + s t r (i)+ ” <= 3 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ t 4 T”+ s t r (i)+” − F”+ s t r (i)+” <= 0 ”)

f o r i i n r a n g e (1 , l e n (s)) :
d = s [i] − s [i +1]
p r i n t (”\ t ”+ s t r (−d) + ” F” + s t r (i) + ” + ” + s t r (d) +
” F” + s t r (i +1) + ” − 100 PBC” + s t r (i) + ” <= 0 ”)

f o r i i n r a n g e (1 , l e n (s)) :
p r i n t (”\ tF ” + s t r (i) + ” − F” + s t r (i +1) +
” − 100 Y” + s t r (i) + ” <= − .5”)

f o r i i n r a n g e (1 , l e n (s)) :
p r i n t (”\ tF ” + s t r (i) + ” − F” + s t r (i +1) +
” − 100 Y” + s t r (i) + ” >= −99.5”)

f o r i i n r a n g e (1 , l e n (s)−2) :
p r i n t (”\ tF ” + s t r (i) + ” + F” + s t r (i +1) + ” + F”
+ s t r (i +2) + ” >= 5 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
i f s [i] == 6 :

p r i n t (”\ tF ”+ s t r (i)+” − PB” + s t r (i) + ” >= 4 ”)
f o r i i n r a n g e (1 , l e n (s) + 1) :

i f s [i] == 5 :
p r i n t (”\ tF ”+ s t r (i)+” − PB” + s t r (i) + ” >= 4 ”)

f o r i i n r a n g e (3 , l e n (s)−1) :
i f s [i] == 4 :

i f s [i +1] <= 4 and s [i +2] <= 4 and s [i −1] <=4
and s [i −2] <= 4 :

p r i n t (”\ tF ”+ s t r (i)+” − PB” + s t r (i) +
” >= 4 ”)

p r i n t (” Bounds ”)
f o r i i n r a n g e (1 , l e n (s) + 1) :

p r i n t (”\ t 1 <= F” + s t r (i) + ” <= 4 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ t 0 <= T” + s t r (i) + ” <= 1 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ t 0 <= PBC” + s t r (i) + ” <= 1 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ t 0 <= PT” + s t r (i) + ” <= 1 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ t 0 <= PB” + s t r (i) + ” <= 1 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ t 0 <= PF” + s t r (i) + ” <= 5 ”)

f o r i i n r a n g e (1 , l e n (s) + 1) :
p r i n t (”\ t 0 <= Y” + s t r (i) + ” <= 1 ”)

p r i n t (” I n t e g e r s ”)
f o r i i n r a n g e (1 , l e n (s) + 1) :

p r i n t (”\ tF ” + s t r (i))
f o r i i n r a n g e (1 , l e n (s) + 1) :

p r i n t (”\ tT ” + s t r (i))
f o r i i n r a n g e (1 , l e n (s) + 1) :

p r i n t (”\ tPBC” + s t r (i))
f o r i i n r a n g e (1 , l e n (s) + 1) :

p r i n t (”\ tPB ” + s t r (i))
f o r i i n r a n g e (1 , l e n (s) + 1) :

p r i n t (”\ tPT ” + s t r (i))
f o r i i n r a n g e (1 , l e n (s) + 1) :

p r i n t (”\ tPF ” + s t r (i))
f o r i i n r a n g e (1 , l e n (s) + 1) :

p r i n t (”\ tY ” + s t r (i))
p r i n t (” End ”)

