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Abstract

A popular method for rendering the direct acoustic path in object-based binaural audio
is to convolve the source signal with a Head-Related Transfer Function (HRTF) that
corresponds to the source angle. HRTFs, however, are only measured for a discrete set
of angles. In order to simulate arbitrary source angles, then, HRTF interpolation must
be performed. In this thesis, we present a comparison of two HRTF interpolation
techniques: bilinear interpolation of the four closest (BI4C) and N -th order spherical
harmonic decomposition (SHD-N). The two metrics used to perform this comparison
are reconstruction error and computational cost in a real-time auralization engine.
Reconstruction error is analyzed with an error function computed on a
perceptually-informed frequency axis. Computational cost is measured via
benchmarking efficient C++ implementations of each algorithm. A higher truncation
order N in SHD-N will result in lower reconstruction error at the cost of being more
expensive to compute. On the other hand, the reconstruction error and computational
cost of BI4C is only a function of the measurement lattice chosen and can be regarded
as having fixed cost.

Results show BI4C generally outperforms SHD-N in terms of reconstruction error if
only sparse measurement grids are available. If dense grids are available, the superiority of
either algorithm is a function of the grid and truncation order used. BI4C computational
cost benchmarks outperform SHD-1 for a low number of sources (≤ 5) but higher order
SHD-N have a lower marginal source cost than BI4C as the number of sources approaches
500.
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Abrégé

Une méthode populaire de rendu du chemin acoustique direct pour l’audio binaural à
approche objet consiste à convoluer le signal source avec une fonction de transfert de
tête (HRTF) liée à l’angle de la source. Cependant, les HRTFs ne sont mesurées que
pour un ensemble d’angles fini. Une interpolation des HRTFs doit alors être effectuée
afin de considérer des angles de source arbitraires. Dans cette thèse, nous présentons
une comparaison de deux techniques d’interpolation des HRTFs: l’interpolation
bilinéaire selon les quatre plus proches voisins (BI4C) et la décomposition en
harmoniques sphériques d’ordre N (SHD-N). Les deux métriques considérées pour
effectuer cette comparaison mesurent l’erreur de reconstruction et le coût de calcul dans
un dispositif temps-réel d’auralisation. L’erreur de reconstruction est analysée avec une
fonction d’erreur calculée sur un axe fréquentiel de nature perceptive tandis que le coût
de calcul est mesuré en comparant des implémentations en C++ efficaces de chaque
algorithme. Un ordre de troncature N plus élevé pour l’interpolation SHD-N entrâınera
une erreur de reconstruction plus faible au prix d’un calcul plus coûteux. À l’inverse,
l’erreur de reconstruction et le coût de calcul de l’interpolation BI4C ne dépendent que
du maillage de mesure choisi et peuvent être considérés comme ayant un coût fixe.

Les résultats montrent que BI4C surpasse généralement SHD-N en termes d’erreur
de reconstruction lorsque seules des grilles de mesure parcimonieuses sont disponibles.
Cependant, si des grilles de mesure denses sont disponibles, la supériorité de l’un ou
l’autre des algorithmes d’interpolation dépend de la grille et de l’ordre de troncature
utilisés. Les coûts de calcul de BI4C surpassent ceux de SHD-1 pour un faible nombre de
sources (≤ 5), tandis qu’une interpolation SHD-N d’ordre supérieur a un coût marginal
de source inférieur à celui de l’interpolation BI4C lorsque le nombre de sources approche
les cinq cents.
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Chapter 1

Introduction

Sound is inherently spatial. As humans, we are constantly experiencing the relationship
between sound and space. This can exist as one or many sound sources interacting with
the acoustics of a given space before arriving at our ears. It is also reflected in the
evolutionary origin of the ear and is evident at several stages of the auditory system [1].
The importance of space in regards to music has been understood for ages, especially
with respect to composition, instrument building, performance practice, concerts, and
music playback. The complicated radiation characteristics of a musical instrument might
be exploited by a composer to create a particular sense of space in a composition, for
example.

Acoustic Virtual Reality (AVR) attempts to use computers to simulate the acoustics
of a non-existent world [1]. A listener is presented with digitally processed auditory
stimuli with the intent of immersing them in a virtual environment. In order to be
successful in this immersion, the stimuli must confirm our everyday understanding of the
laws of physics such as our perception of the volume, timbre, distance, and location in 3D
space. The content of these virtual environments can be drawn from reality (e.g. recorded
acoustic musical performance), digitally synthesized, or a combination of the two.

The practice of creating audible sounds based on a description of an acoustic scene
is known as auralization or acoustic rendering. At the core of this process is audio
signal processing. To create an interactive virtual acoustic space, auralization must be
performed in real-time since it must react to various inputs (e.g. head-tracking in a virtual
reality headset). This requirement often creates a trade-off between computational cost
and sound field accuracy. Therefore, it is important to pay special attention to the
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algorithms used during auralization and optimize them to match the needs or limits of
the platform being created.

In the free field, a sound radiated from a point in space will reach the two ears after
interacting with the head, torso, and pinnae. If we recorded the air pressure levels just
before they entered each ear canal, they would contain various cues that tell our brain
where to localize this sound in 3D space. Mathematically, the incorporation of these
localization cues can be expressed as an overall filtering operation on the original sound.
These filters are known as Head-Related Transfer Functions (HRTFs).

The HRTF is a key component in virtual acoustic rendering because it describes how
a listener’s head, ears, and torso affect the acoustic propagation of sound sources arriving
from various directions [1]. Typically, HRTFs are obtained for an individual by taking a
series of discrete Head-Related Impulse Response (HRIR) measurements in an anechoic
chamber. HRTFs are then computed as the Fourier transform of these HRIRs. Ideally,
we would be able to create the illusion of sound emanating from an arbitrary direction
and include resiliency to head movements. However, due to the discrete measurement
requirement of HRTFs, we are required to choose the HRIR closest to the source angle
we wish to simulate, unless we interpolate between known HRIRs. The task, then, is to
form a continuous functional representation of an HRTF by using various mathematical
techniques.

This thesis will explore two popular methods for building continuous HRTF models in
order to spatially interpolate an HRTF from its individual measurements: interpolation
via weighted averaging and spherical harmonic decomposition. In particular, we are
interested in comparing their interpolation quality and computational cost in a real-time
auralization engine. Because interpolation quality is directly related to the accuracy of
the resulting sound field, it is useful to know how well these techniques reconstruct new
HRTFs. Moreover, we must consider the computational complexity of these algorithms
in order to validate their use for a platform with limited computational resources.

1.1 Motivation

The democratization of development tools for gaming, audio, film, and smartphone apps
has created a need for efficient, high-quality spatial audio to render immersive experiences
over headphones. Accordingly, a number of open- and closed-source software development
kits (SDKs) for audio spatialization have been released over the years to fulfill this need
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[2] [3] [4] [5]. Each of these tools have chosen schemes for rendering the direct path
(sound that travels directly from source to receiver), the near-field (complex interference
patterns at short distances), and the far-field (reverberation). It is generally agreed upon
that using HRTFs to simulate the direct path is a good choice as it is an efficient yet
accurate approach. However, there is still research to be done to determine how to best
compute or retrieve these HRTFs to make the experience as realistic as possible while
maintaining the real-time requirement.

Since the localization cues embedded in HRTFs are individual dependent, HRTFs
would ideally be personalized for everyone interested in consuming spatial audio over
headphones. Of course this is an extremely expensive and time-consuming process,
especially to get the number of measurements required to at least match human
localization accuracy. Accordingly, lots of research focuses around adapting generic
HRTFs to individuals based on anatomic data, such as photos of a listener’s head and
ears. Still, the question of the minimum number of HRTF measurements required to
build an accurate, continuous HRTF model remains to be seen. This question is of
interest in this thesis and will be explored more in-depth in Chapter 2.

There has been a renewed interest in recent years around Ambisonics with the
increased accessibility of B-format microphones [6]. These microphones use multiple
capsules to record 3D sound field information and encode the signals into the
Ambisonics domain, where it can be then decoded onto an arbitrary configuration of
microphones or loudspeakers. Ambisonic technologies are desirable for their high level
of adaptability to different environments including binaural and surround sound setups.
The downside, however, is the requirement for the choice of an Ambisonic order, where
higher orders provide more accurate sound fields but are expensive to compute.

The mathematical framework underlying Ambisonic technologies involves projecting
a sound field (sampled at many points on a sphere) onto a set of special functions called
the spherical harmonics. This process is referred to as the spherical Fourier transform
(SFT). Because HRTFs can be considered as a sound field sampled at many points on a
sphere, it is possible to encode HRTFs into spherical harmonics (i.e. Ambisonics) via the
SFT and spatially interpolate this representation to compute HRIRs at arbitrary angles.
This, then, is the motivation for spherical harmonic decomposition of HRTFs, which will
be studied in-depth in this thesis.

A more traditional method for performing interpolation involves taking weighted
averages of known points of a function to approximate some intermediate point. This
can be done by fitting a line, polynomial, or spline function between the two known
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points to estimate a third. Here, we are interpolating the function in question directly
rather than interpolating a set of physically-informed functions that approximate the
function in question, as is the case in spherical harmonic decomposition. Direct
interpolation of HRTF coefficients can be accomplished by using, for example, the
bilinear method. Bilinear interpolation is linear interpolation (fitting a line) along two
orthogonal axes. For example, if we want to compute an HRIR at some query angle, we
can take a linear combination of the four HRIRs closest to that angle, where each HRIR
is weighted by a factor inversely proportional to its distance to the query angle. In this
way, we can estimate an HRIR anywhere on the sphere.

The incorporation of both of these approaches into an auralization engine involves
convolution since the source signals must be filtered by the interpolated HRTFs.
Time-domain convolution, however, is a computationally expensive process [7].
Therefore, for real-time filtering, convolution is accomplished via element-wise
multiplication of frequency domain coefficients, where the discrete Fourier transform of
each signal is computed via the Fast Fourier Transform (FFT). In this thesis, we will
explore these FFT-based fast convolution techniques in the context of the two HRTF
interpolation algorithms described above.

As of yet, while they are two of the most popular HRTF interpolation algorithms, there
has been no in-depth comparison of spherical harmonic decomposition and interpolation
via weighted averaging. This thesis will attempt to provide this comparison. Two metrics
will be used in this analysis: reconstruction error and computational cost. The goal of
this research is to provide a developer who is building an auralization engine with the data
necessary to better inform their choice of interpolation technique. The findings of this
research will also prove to be beneficial to those interested in the question of minimum
HRTF measurement density.

1.2 Thesis Overview

In Chapter 2, an overview of virtual acoustic rendering is presented, followed by
explorations of the theory behind spherical harmonic decomposition and interpolation
via weighted averaging. These will also include comments on the advantages and
shortcomings of each algorithm. Additionally, a discussion of fast convolution
algorithms for real-time auralization is presented.

In Chapter 3, we motivate and present the results of the reconstruction error analysis,
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showing how well each algorithm is able to interpolate according to our error function.
In Chapter 4, we describe our computational cost benchmark procedure, test system,

and its performance data.
Finally, in Chapter 5, we conclude by summarizing the observations drawn from the

performance of each algorithm and their suitability for real-time applications. Future
directions of this research are also discussed.



6

Chapter 2

Background

In this chapter, we give an overview of how humans localize sound in order to motivate
virtual acoustic rendering and interpolation of Head-Related Transfer Functions. We then
explain considerations relevant to auralization and binaural technology. Next, we describe
in detail each of the interpolation algorithms considered in this thesis. We conclude by
giving an overview of FFT-based convolution algorithms for real-time auralization.

2.1 Spatial Listening

Human hearing includes the ability to perceive loudness, pitch, and timbre as well as
evaluate the position of the sound source in space. From an evolutionary perspective, the
ability to localize sounds has helped humans identify and evade danger for thousands of
years. Many studies have measured our ability to locate a sound source and have found
it depends on many factors. These vary from person to person and include primarily the
source’s direction and acoustical properties. On average, humans can localize sounds to a
precision ∆θ of about 1◦ to 3◦ in front of us. ∆θ is known as the minimum audible angle
(MAA) or localization blur and refers to the smallest change in source position that we
can perceive. ∆θ is about three times larger in lateral directions and twice as large in
rear directions. The MAA is also frequency-dependent; we can best localize frequencies
below 1.1 kHz [1].

When in the presence of two or more sound sources, our brain can often locate all the
sources based on the superposition of each source’s pressure in our ears. If many sources



2. Background 7

have the same onset in time, we will sometimes perceive the sounds as a fused auditory
event coming from a single virtual sound source. In fact, this is the basis of stereophonic
and multi-channel surround sound reproduction.

Audio engineers can alter the amplitudes of loudspeaker channels that are playing the
same source through panning in order to create a sense of space or movement. However,
in traditional stereophonic headphones for example, this sense of space is limited to a
straight line connecting the entrances of the two ear canals. Our ability to determine
the location of an auditory event along this line is referred to as lateralization, whereas
localization refers to locating an event in three dimensions. For an enclosed space with
reflective surfaces, sound will reflect of those surfaces and arrive at the ears in addition
to the direct path. It is through these reflections that the listener can form a spatial
impression of both the environment and sound source. Often, audio engineers will imitate
these reflections by applying reverberation to sounds in order to enhance the sense of space
created with amplitude panning.

2.1.1 Sound Localization Cues

Sound localization involves determining the apparent or perceived position of a sound
source in space in terms of the direction and distance relative to the listener. Our brain
localizes sounds by aggregating various localization cues. Psychoacoustic studies have
identified these as interaural time difference (ITD), interaural level difference (ILD),
spectral cues, and dynamic cues. Here, we will give a brief overview of each of these.

Interaural time differences describe the time difference of arrival of sound waves
between the left and right ears:

ITD(s) = τL(s)− τR(s),

where τL(s) and τR(s) are the source-dependent onsets in time of sound waves at the
left and right ears, respectively. When a source is directly in front or behind you, the
ITD is theoretically zero since the sound reaches both ears at the same time. As sources
deviate from this plane, the acoustic path length will be shorter for the ear closer to
the source and longer for the ear farthest from the source. Thus, finding the difference
between these two path lengths gives a non-zero cue that helps the brain localize the
source. Additional psychoacoustic experiments have shown that interaural phase delay
difference, the difference in phase delays between the two ears, is important for localizing
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sounds below 1.5 kHz [1]. Various methods exist for calculating these values based on
different approximations of the head.

Interaural level differences denote the difference in sound pressure amplitude at the
two ears. For a source off to one side, the sound pressure at the farther ear will be
attenuated due to the shadowing effect of the head, especially at the high frequencies.
This difference in amplitudes is frequency-dependent and can be written as

ILD(s, f) = 20 log10

∣∣∣∣∣Pr(s, f)
Pl(s, f)

∣∣∣∣∣ (2.1)

where Pl(s, f) and Pr(s, f) are the frequency-domain sound pressures at the left and right
ears, respectively, generated as the result of some sound source s. At low frequencies,
ILDs are small regardless of the source direction because the head-shadowing effect is
negligible for these frequencies in the far field. Above 1.5 kHz, both ILDs and ITDs
contribute to localization, with ILDs becoming gradually more dominant above 4 kHz.

Spectral cues refer to the direction-dependent spectral filtering performed by the head
and pinnae. When direct and reflected acoustic paths enter the pinnae, they interfere
with waves reflected within the pinnae in complex patterns, leading to resonances at
certain frequencies, especially above 5-6 kHz. Many reseachers have tried to explain
the relationship between localization and the spectral peaks and notches caused by the
pinnae. Although we know spectral cues are important for vertical localization and
clarifying front-back confusion, the quantitative reasoning for this is still incomplete [1].

Dynamic cues simply describe how humans improve localization ability (especially
on the vertical plane) when the head is not stationary. By aggregating many of these
cues over time for even tiny head movements, the brain can build a much more complete
picture of the acoustic environment.

2.1.2 Head-Related Transfer Functions

As we have mentioned, sound enters the auditory system after interacting with various
anatomical structures like the head, torso, and pinnae. Therefore, the sound pressures at
the two ears (binaural pressures) have these localization cues embedded within them. If
we wish to model the process of localizing sound sources for virtual acoustic rendering,
we can simply focus on these signals, as opposed to physically modeling and aggregating
each localization cue. In signal processing terms, the filtering effect resulting from the
propagation of sound from a source to the two ears can be regarded as a linear, time-
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invariant (LTI) process. These filters are referred to as Head-related transfer functions
(HRTFs). They can be measured by comparing the binaural sound pressures resulting
from some source with the corresponding sound pressure in the free-field (i.e. if no head,
body were there). For some arbitrary source position located in spherical coordinates at
(φ, θ, r), the HRTFs for the left and right ears can be defined as

HL = HL(φ, θ, r, f) = PL(φ, θ, r, f)
P0(r, f) (2.2)

HR = HR(φ, θ, r, f) = PR(φ, θ, r, f)
P0(r, f) (2.3)

where PL and Pr are the complex-valued frequency-domain sound pressures at the left
and right ears, respectively. P0 is the complex-valued frequency-domain sound pressure
in the free field at the center of the head with the head absent. These functions are also
dependent on the anatomical features of the individual measured.

Because P0 is the result of a simple free-field acoustic wave propagation, it can be
written as

P0(r, f) = j
kρ0cQ0

4πr ej(ωt−kr) (2.4)

where ρ0 is the density of air, c = 343 m/s is the speed of sound, Q0 is the intensity of
the point sound source, r is the source distance, t is time, and k = 2πf/c = ω/c is the
wave number.

2.2 Auralization and Binaural Technology

As we have discussed, binaural signals (sound pressure signals recorded at the entrances
of the human ear canal) contain most of the information we need to localize sounds
in 3D space. The most straightforward way to obtain a binaural signals is to place
small microphones at each ear and record the acoustic pressure signals. Therefore, the
localization cues introduced by the head, torso, and pinnae are preserved and can be
reproduced over headphones, for example. Traditionally, binaural recordings are made
with a manikin. These manikins are typically designed based on the average dimensions
of a certain population and have been used to measure HRTFs, as well.

One early method for auralizing spatial audio is the binaural recording and playback
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system. This simply involves recording binaural signals (often with a manikin), applying
some equalization and amplification, and playing them back over headphones to a listener.
In this way, one can experience the sound field surrounding the manikin during the
recording. Because this method requires the reproduced sound field to exist during the
recording, it is limited in the type of acoustic scenes that can be rendered. In the next
section, we will see a technique for rendering arbitrary acoustic environment through the
use of signal processing.

2.2.1 Coordinate Systems

Before discussing auralization via synthesis of binaural signals with computers, we must
review spatial coordinate systems. In most spatial listening research, a sound source is
located in terms of its direction and distance in relation to the listener’s head. Typically,
the origin of these coordinate systems is chosen as the midpoint of the line segment
connecting the listener’s ear canals.

In a three-dimensional Euclidean space (i.e. R3), pairing the orthogonal basis vectors
in the x, y, and z dimensions specify three perpendicular planes. They are defined relative
to the direction the listener is facing and are referred to as the horizontal plane (front/back
and left/right), median plane (front/back and up/down), and lateral plane (up/down
and left/right). In the literature, different coordinate systems for sound localization have
arisen based on various conventions. For this thesis, we will exclusively use the anti-
clockwise spherical coordinate system.

Figure 2.1: Anti-clockwise spherical coordinate system [8].

In the anti-clockwise spherical coordinate system, all points in 3D space are described
by the ordered triple (φ, θ, r). φ is called the azimuth angle and describes the angle
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between the front direction (φ = 0◦) and the projection of a vector onto the horizontal
plane. It can take on values 0◦ ≤ φ < 360◦ which increase as they move anti-clockwise
(left) about the up-down axis. The elevation angle θ is the angle between a vector and
the horizontal plane, relative to the horizontal plane (θ = 0◦). It can take on values
−90◦ ≤ θ ≤ 90◦, where −90◦ is down and 90◦ is up. The source distance with respect to
the origin is denoted by r and can range from 0 ≤ r <∞.

This coordinate system is preferable compared to (x, y, z) Euclidean systems due to
the spherical symmetry of acoustic wave propagation in an isotropic medium. In the next
section, we will see why this is important in auralizing virtual acoustics.

2.2.2 Virtual Acoustic Rendering

In order to construct virtual acoustic scenes that might not exist in the real world, we must
synthesize binaural signals using audio signal processing. This idea was pioneered in the
early 1980s by Morimoto and Ando [9] and later applied to headphones by Wightman
and Kistler [10]. Binaural synthesis for virtual acoustic rendering works by filtering
monophonic source signals by a pair of HRTFs, where the source location is determined
by the location of the measured HRTF. Given left and right ear HRTFs HL(φ, θ, r, f) and
HR(φ, θ, r, f), the free-field binaural signals resulting from a mono discrete-time source
signal eo[n] with frequency-domain representation E0(f) can be expressed in the frequency
domain as:

EL(φ, θ, r, f) = HL(φ, θ, r, f)E0(f) and ER(φ, θ, r, f) = HR(φ, θ, r, f)E0(f) (2.5)

Equivalently, in the discrete time domain, they can be expressed as

eL[φ, θ, r, n] = hL[φ, θ, r, n] ∗ e0[n] and eR[φ, θ, r, n] = hR[φ, θ, r, n] ∗ e0[n] (2.6)

where the head-related impulse responses (HRIRs) hL and hR are the inverse Fourier
transforms of HL and HR, respectively. Here, a ∗ b denotes the circular convolution of
two N -point periodic signals a and b and is defined by

(a ∗ b)N ,
N−1∑
m=0

a[m]b[n−m]. (2.7)
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where n is the time sample index and n = 0, 1, 2, . . . , N − 1.
When the binaural signals eL and eR are displayed over a pair of headphones, the

listener will hear sound pressures comparable to those generated by the ideal point source
localized at (φ, θ, r). This, then, is the main idea behind virtual acoustic rendering (virtual
auditory display).

Robust binaural synthesis engines will go beyond the simple convolution of sources
with HRIRs to account for other aspects of the environment. This might involve
simulating reverberation, source directivity, occlusion, reflections off obstacles, or
frequency-dependent distance attenuation. Reverberation simulation can be divided
into two main approaches: convolution-based or synthetic [11]. In convolution-based
reverberation, the binaural signals are convolved with impulse responses of the
environment to be simulated (called Binaural Room Impulse Responses). In synthetic
reverberation, many approaches exist including ray tracing, Feedback Delay Network
(FDN), or Spectral Magnitude Decay (SMD) techniques, each with their own
advantages and disadvantages [12]. Simulation of source directivity refers to the way
many sound sources, especially musical instruments, sound different based on our
location relative to it. Occlusion happens when sound waves emanating from source to
listener are blocked by objects between them [13]. Techniques also exist for simulating
reflections off obstacles as well as modeling distance attenuation beyond the traditional
-6 dB with every doubling of distance. For example, some spatializers address the effect
of air absorption at high frequencies for large distances.

The techniques described here that improve upon basic anechoic path simulation to
create a more realistic virtual acoustic environment are out of the scope of this thesis.
Rather, we are solely focused on how to best render the anechoic (direct) or early reflection
wavefronts for arbitrary source angles when only sparse HRTFs are available.

2.2.3 Channel-, Object-, and Scene-Based Audio

In general, audio spatialization techniques fall into one of three categories: channel-based,
scene-based, or object-based. These distinctions refer to how individual sound sources
are aggregated and mapped onto loudspeakers for presentation. Channel-based audio
currently accounts for the large majority of audio rendering whereas scene- and object-
based audio are often referred to as the “next generation” of audio rendering [14].

In channel-based audio (CBA), the audio material (i.e. individual sources) is mixed for
a specific loudspeaker layout (e.g. stereo or 5.1) by a mixing engineer. Listeners would
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ideally have their loudspeakers placed in the same location as the mixing engineer’s
loudspeakers so the spatialization is heard as the mixing engineer intended.

In object-based audio (OBA), the material is stored as unmixed audio components
(i.e. objects) that each have associated metadata. The metadata contains information
that characterizes each object such as its spatial location in the scene and gain level. It is
intended to be adaptable to the specific loudspeaker configuration available and can allow
for real-time adjustment of audio object characteristics. In binaural OBA, retrieving the
HRIR that will spatialize each object is a nontrivial problem when we only have sparsely
measured HRTFs. In this thesis, two solutions for this problem will be developed and
compared with each other.

Scene-based audio (SBA) describes the use of Higher-Order Ambisonics (HOA) to
render sound scenes. HOA involves constructing a 3D sound field in the Ambisonics
domain by mixing sources that have been projected onto a set of special functions called
spherical harmonics. The audio material is easily transported because an arbitrary
number of sources are encoded onto a fixed number of Ambisonic channels, which can
then be decoded onto an arbitrary configuration of loudspeakers. The quantity of
channels depends on the Ambisonic order, which is a quantity that specifies how many
spherical harmonic functions we are to include in our decomposition. For an Ambisonic
order N , (N + 1)2 coefficients are required per sample, each representing the
contribution of a given spherical harmonic (SH) function to the overall sound field. The
sound field is then defined as a linear combination of these SH functions weighted by
their corresponding coefficient. SH functions are structured hierarchically, meaning we
can always choose to include more functions to create a more precise sound field (i.e.
increase order) at the cost of computing more coefficients. Typically, when rendering
SBA for headphones (binaural SBA), the Ambisonic-encoded sound field is decoded
onto a set of virtual loudspeakers, which are spatialized as static virtual sources via
convolution with the corresponding HRIR. This convolution can be performed per
Ambisonic channel (per SH function) or per virtual loudspeaker in the time domain.
For convolution per Ambisonic channel, the HRTFs must be also projected onto
spherical harmonics (i.e. encoded into Ambisonics). This projection is identical to the
SH decomposition of HRTFs for OBA that is central to this thesis but is executed with
a different purpose. In SBA, the purpose is simply to decrease overall computation by
only convolving once per channel whereas in OBA, the purpose is to also retrieve
arbitrary source angles (i.e. interpolate).
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2.2.4 Measurement of HRTFs

As we have seen, the process of sound radiating from a point source to a listener’s left and
right ears can be regarded as a linear, time-invariant (LTI) system. In signal processing,
LTI systems are characterized entirely by a single function called the impulse response. In
the frequency domain, this function is called the frequency response. Numerous methods
exist for acoustically measuring impulse responses or frequency responses that typically
involve exciting the system with a signal and recording its output.

HRTF measurement is no different. Most commonly, small measurement microphones
are placed at the ear canal entrances of human or artificial subjects and excitation signals
are presented from various directions. Ideally, the measurement takes place in an anechoic
chamber to avoid any coloration from the environment. Three main techniques have
arisen for HRTF measurement [1].

Figure 2.2: Measurement setup for the ITA-HRTF database. A dummy head is rotated
on a turn table to achieve varying measurement angles relative to the fixed speaker arc.
Taken from [15].

In the impulse method, the system is excited by an approximation of an ideal Dirac
distribution δ(t), which is a deterministic signal with a flat magnitude spectrum and linear
phase. Generating these impulse signals with computers, however, introduces a tradeoff
between the length of the rectangular signal (necessary for good signal-to-noise ratio) and
the bandwidth (necessary for understanding the response of the system to a broadband of
frequencies). Additionally, the highly transient sound pressure can cause nonlinear effects
in the air. Therefore, the impulse method is seldom used for acoustic measurement and
is perhaps best understood as a theoretical basis for impulse response measurement. The
Fourier analysis and correlation methods are then practical realizations of this theoretical
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basis.
In the Fourier analysis method, a discrete Fourier transform (DFT) is applied to the

input signal x[n] and output signal y[n] and divided for each ear:

H(f) = Y (f)
X(f) . (2.8)

To retrieve h[n], an inverse DFT can be applied to H(f). Excitation signals for this
method should cover the largest bandwidth possible. Therefore, swept sinusoidal signals
are commonly used.

In the correlation method, a random-phase white or pink spectrum signal (i.e. noise) is
chosen as an input signal x[n] because its N -point autocorrelation function approximates
the unit sampling sequence δ[n]. The autocorrelation function is used to describe how
similar a function is with a delayed version of itself. Upon recording the output signal y[n],
the cross-correlation function of x[n] and y[n] is used to compute the impulse response
h[n]. Cross-correlation describes how correlated two functions are with each other. Often,
excitation signals such as Maximum Length Sequences or Golay Codes are substituted
due to their ability to optimize signal features such as the crest factor (ratio of peak to
RMS values of the waveform).

2.2.5 Properties of HRTFs

Observing time domain plots of HRIRs on the horizontal plane (θ = 0◦) with a radius of
1.2m as in Figure 2.3, we notice a few features. First, the samples are roughly zero for
the beginning part of each IR. This section corresponds to the time it takes for the sound
to propagate from the source to each ear. We also notice the non-zero amplitudes for
the left ears begin before and have larger amplitudes than the corresponding right ears
for azimuths φ = 45◦, 90◦, 135◦. These time differences of arrival between the left and
right ears are the Interaural Time Differences (ITDs) while the differences in amplitudes
are the Interaural Level Differences (ILDs). Since the azimuths are increasing in an anti-
clockwise direction, the left ear is closer to the sound source, meaning the sound will
reach it earlier than and be louder than the right ear.
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Figure 2.3: Left ear and right ear HRIRs of the KEMAR mannequin from SADIE II
Database [16] for 4 azimuths on the horizontal plane from a radius of 1.2m.

Figure 2.4 shows plots of the HRTF magnitude responses for the same azimuths on
the horizontal plane. Inspecting these graphs, we notice the responses are roughly flat
near 0 dB for frequencies less than 800 Hz. This is because the scattering and shadowing
effects of the head are negligible since the head is smaller than the half wavelength of
these sound waves. However, as frequency increases, the interactions between the head,
torso, and pinnae become much more complicated. Again, we notice the ILDs between
the left and right ears as the left ear has larger magnitude for azimuths φ = 45◦, 90◦, 135◦.
We mentioned in Section 2.1.1 how pinna anatomy creates spectral notches in HRTFs,
which are crucial for localization above 5-6 kHz. While we can see in these plots that
these notches exist, further signal processing techniques, such as those described in [17],
would need to be performed to identify and map spectral notch frequencies.
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Figure 2.4: Left ear and right ear HRTF magnitude responses of the KEMAR
mannequin from SADIE II Database [16] for 4 azimuths on the horizontal plane.

Another property of HRTFs is their predominately minimum-phase characteristic. In
1977, Mehrgardt and Mellert showed that HRTFs are approximately minimum-phase
below 10 kHz [18]. They showed that since HRTFs are complex-valued functions of
frequency, they can be written as the product of a minimum-phase function and an
all-pass function:

H(ejω) = Hmin(ejω)Hap(ejω) (2.9)

Generally speaking, any transfer function that describes a causal LTI system can be
written as a product of a minimum-phase component and an all-pass component [19].
Minimum-phase transfer functions have all of their poles and zeros inside the unit circle
of the z-plane. All-pass functions are characterized by a unit magnitude response. In
1995, Kulkarni et al. argued that subtle variations in the phase component of the all-pass
factor of an HRTF are perceptually irrelevant when binaural synthesis is performed from
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a fixed direction [20]. In that case, it is justified to model an HRTF as a minimum-
phase function plus a pure-delay component. One method for obtaining minimum-phase
components is done by computing the complex cepstrum (the inverse Fourier transform
of the log of the original spectrum) and reflecting anticausal components across the time
= 0 axis to make them causal [21]. In other words, zeros and poles lying outside the unit
circle are shifted to their conjugate reciprocals which lie inside the unit circle. Then, the
all-pass component can be computed as the ratio of the original spectrum and minimum-
phase component.
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Figure 2.5: A left ear HRIR and its minimum-phase version.

Given that ITDs are pure delays (it takes longer for sound to reach the farther ear), the
minimum-phase component is an approximation of the HRTF with the ITD removed (i.e.
both ears are time-aligned). In 1992, Kistler and Wightman showed that localization
error improved when reconstructing HRTFs by using minimum-phase approximations
cascaded with simple delays [22]. Since then, many techniques for estimating ITDs with
minimum-phase approximations have arisen. For example, Nam et. al [23] proposed an
ITD estimator based on the value τ ∈ Z that maximizes the cross-correlation of an HRIR
h[n] with its minimum-phase version hmin[n]:

τ̂ = argmax
τ

{∑
n

h[n− τ ]hmin[n]
}

(2.10)
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Figure 2.6: KEMAR mannequin ITDs estimated with Nam et al. technique [23] for the
horizontal plane.

Once τ̂ is known for both the left and right ears, they can be subtracted to obtain
the interaural time difference ITD:

ITD = τ̂L − τ̂R. (2.11)

Figure 2.5 is a plot of ITDs for the KEMAR mannequin returned from this
estimator for many azimuthal angles on the horizontal plane. Note the longest ITDs
occur along the lateral plane while the shortest occur along the median plane. Also note
the discontinuities and deviations from the overall sinusoidal shape of the plot. This is a
result of various non-smooth anatomical features of the mannequin head as well as
limitations of this ITD estimation approach.

Once an accurate estimation of ITDs is achieved, they can be simulated with
fractional delay lines. Constructing good quality fractional delay lines of time-varying
length (for example, with Lagrange interpolation [24]), however, is itself a
computationally expensive process, making it costly to perform in an online scenario.
For this reason, approximations of HRTFs as minimum-phase functions cascaded with
all-pass functions for binaural rendering are left out of the scope of this thesis.
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2.2.6 Functional Modeling of HRTFs

In practice, HRTFs are typically measured for an individual at discrete locations on
a sphere. The density and uniformity of this measurement grid varies across HRTF
databases and is often chosen according to the measurement equipment and resources
available. As we have discussed, we ideally would be able to render sources coming from
arbitrary angles, not only the angles that were used to measure the HRTF. Therefore, it
is desirable to use the HRIRs available to build a continuous, functional model in order
to construct HRIRs at unmeasured directions. This general process is sometimes referred
to as spatial interpolation, which should not be confused with more precise definitions of
interpolation (the act of fitting a function between two or more known points to estimate
an intermediate point).

Many methods exist for spatially interpolating HRTFs. In [1], Bosun Xie grouped
these into three categories: linear techniques, spectral shape basis function techniques,
and spatial basis function techniques. This thesis will explore bilinear interpolation of
HRTFs (which falls under linear techniques) and spherical harmonic decomposition of
HRTFs (which falls under spatial basis function techniques). For completeness, we will
mention some other popular approaches before analyzing these two in-depth in the
following sections.

Linear techniques can most generally be described as estimating unknown
HRIRs/HRTFs via a linear combination of known HRIRs/HRTFs. If we maintain a
constant source distance r = r0, this can be written in the time domain as:

ĥφ,θ[n] =
M−1∑
i=0

wihφi,θi [n] (2.12)

where the index i = 0, 1, ...,M − 1 spans the total number of spatial samples M and
wi are weights associated with each HRIR. Due to the linearity property of the discrete
Fourier transform, we can write the same equation in the frequency domain:

Ĥφ,θ(ejω) =
M−1∑
i=0

wiHφi,θi(ejω) (2.13)

The weights wi and HRIRs/HRTFs are chosen based on the selected interpolation scheme.
As a basic example, one could perform adjacent linear interpolation. Given two adjacent
azimuths (φ0, θ0) and (φ1, θ0) and their corresponding measured HRIRs hφ0,θ0 [n] and
hφ1,θ0 [n], an intermediate HRIR ĥ[n] located halfway between these two azimuths could
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be calculated as

ĥ[n] = 0.5 ∗ hφ0,θ0 [n] + 0.5 ∗ hφ1,θ0 [n]. (2.14)

This technique is generalizable to arbitrary intermediate points where the weights are
inversely proportional to the distance to each measured HRIR. Bilinear interpolation and
barycentric interpolation are two-dimensional extensions of adjacent linear interpolation.
Bilinear interpolation will be explored more in-depth in Section 2.4.

It is also possible to interpolate HRTFs with a recursive IIR structure, although issues
of stability often arise. In 1995, Jot et al. gave a method for pairing and ordering HRIRs
that allow for IIR structures to be easily imposed [25]. The four possibilities for IIR filter
representation given in that paper are:

• direct-form coefficients of the cascaded second-order sections,

• magnitudes and log-frequencies of the poles and zeros,

• measurement grid filter coefficients,

• log area ratios of the measurement grid filter coefficients.

In IIR representation, the act of dynamically updating filter coefficients can create
transients (heard as audible clicks) that must be compensated for with cross-fading [26].

Decomposition of HRTFs with spectral shape basis functions involves linear
combinations of frequency-dependent basis functions that constitute various HRTF
spectral shapes [1]. The most common scheme for selecting the basis functions and
weights is called Principal Component Analysis (PCA). PCA was first applied to
HRTFs in 1987 by Martens [27]. The technique involves eliminating correlations among
HRTFs in order to reduce dimensionality. Many researchers have implemented and
published different versions of PCA [22] [28] [29] [30], but here we will review the basic
principle.

In PCA, eliminating correlations involves subtracting the mean HRTF across source
directions from each of the Q measured HRTFs. Then, a Hermitian matrix is
constructed from this matrix and its eigenvectors are computed. These eigenvectors are
then the spectral shape basis vectors. Finally, the weights are obtained by checking the
orthonormality of the uncorrelated HRTFs with each spectral shape basis vector.
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Other methods for performing decomposition of HRTFs with spectral shape basis
functions are PCA via singular value decomposition (SVD) [31] and subset selection of
HRTFs [32].

In the next section, we will review in-depth the theory of spatial basis function
decomposition of HRTFs using the spherical harmonic basis functions as an example.

2.3 Spherical Harmonic Decomposition of
HRTFs

This section presents the technique for representing HRTFs in the spherical harmonics
(SH) domain. We then describe spatial interpolation of SH-encoded HRTFs.

2.3.1 The Spherical Fourier Transform

The precise definition of spherical harmonics expansion varies greatly depending on
author inclinations or application-specific conventions, so care must be taken when
comparing equations. The coordinate system used in this thesis is the spherical
coordinate system suggested by [8] (shown in Figure 2.7) which specifies locations
(φ, θ, r). This is also known as the right-handed vertical-polar coordinate system. Here,
0◦ ≤ φ < 360◦ is the azimuthal angle measured counterclockwise from the positive
x-axis and −90◦ ≤ θ ≤ 90◦ is the elevation angle measured relative to the x-y
(horizontal) plane.

Figure 2.7: Spherical coordinate system used, as illustrated in [8].

SH decomposition of HRTFs can be considered as an analysis/synthesis process, where
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we first analyze a sound field with a projection onto SH basis functions, then re-synthesize
that sound field using these basis functions. The analysis step is executed using the
spherical Fourier transform, which is given by

HL,R
nm (k) =

∫ 2π

φ=0

∫ π/2

θ=−π/2
HL,R(φ, θ, k)Y m

n (φ, θ)∗ sin(θ)dθdφ (2.15)

Here, we are considering decomposition of HRTFs for both the left HL(φ, θ, k) and right
HR(φ, θ, k) ears, where each of these are idealized continuous functions in the spherical
angles 0◦ ≤ φ < 360◦ and −90◦ ≤ θ ≤ 90◦; k = 2πf/c is the wave number with frequency
f and speed of sound c. The complex spherical harmonics Y m

n are defined by

Y m
n (φ, θ) =

√√√√2n+ 1
4π

(n−m)!
(n+m)!P

m
n (cos(θ))ejmφ (2.16)

where n is the spherical harmonic order, m is the spherical harmonic degree, and j =
√
−1. (·)∗ denotes complex conjugation. The spherical harmonics are the solution to

the wave equation (the Helmholtz equation) in spherical coordinates [33]. The Pm
n terms

are the associated Legendre polynomials, which represent standing spherical waves for
the elevation angle θ, whereas the term ejmφ represents traveling spherical waves for the
azimuth angle φ. The integral

∫ 2π
0
∫ π/2
−π/2 sin(θ)dθdφ is a surface integral over the entire

unit sphere.
The SHs are orthonormal with respect to each other, i.e.:

∫ 2π

0

∫ π/2

−π/2
Y m′

n′ (φ, θ)Y m
n (φ, θ)∗ sin(θ)dθdφ = δn−n′δm−m′ (2.17)

where δ is the Kronecker delta function and n′ and m′ are an arbitrary SH order and
degree, respectively.

In Equation 2.15, HL,R
nm (k) is then referred to as the spherical Fourier transform of

HL,R(φ, θ, k) and represents the contributions of the basis functions Y m
n . To re-synthesize

the HRTFs from these weighted basis functions, we perform the inverse spherical Fourier
transform, which is given by

HL,R(φ, θ, k) =
∞∑
n=0

n∑
m=−n

HL,R
nm (k)Y m

n (φ, θ) (2.18)

where HL,R
nm (k) is as in Equation 2.15 and Y m

n (φ, θ) is as in Equation 2.16.
In practice, however, the HRTFs are not continuous in φ, θ but are sampled at Q



2. Background 24

directions given by Ω1,Ω2, . . .ΩQ where each of these is an ordered pair (φ, θ).
Additionally, the SH representation is truncated at an order N < ∞ which results in
(N + 1)2 total SH coefficients.

Figure 2.8: Projection of several real spherical harmonic functions onto the surface
of the sphere. As order n increases, the inclusion of more SHs permit higher spatial
resolution during decomposition of functions such as HRTFs. From [34].

All HRTFs in a measured HRTF set can be given by the length-Q space-domain
column vector H = [H(Ω1, k), H(Ω2, k), . . . , H(ΩQ, k)]T . Then, Equation 2.18 can be
rewritten as the matrix multiplication

H = Y m
n Hnm, (2.19)

where Y m
n is the Q x (N + 1)2 SH transformation matrix given by

Y m
n =



Y 0
0 (Ω1) Y 1

−1(Ω1) . . . Y M
N (Ω1)

Y 0
0 (Ω2) Y 1

−1(Ω2) . . . Y M
N (Ω2)

... ... . . . ...
Y 0

0 (ΩQ) Y 1
−1(ΩQ) . . . Y M

N (ΩQ)

 (2.20)

and Hn,m is a length-(N + 1)2 row vector containing the contributions of each basis
function. In audio, a convention has been adopted for mapping the coupled indices n,m
onto a single index. This index is called the Ambisonic Channel Number (ACN). Thus,

https://ambisonics.ch/post/ambisonic-channels
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the rows of Y m
n span the (N + 1)2 ACNs while the columns span the locations of the Q

HRTF measurements. Here, we have omitted the superscript L,R for simplicity.
Likewise, we can write Equation 2.15 as

Hnm = Y †H (2.21)

where Y † = (Y HY )−1Y H is the Moore-Penrose pseudoinverse of the SH matrix Y . In
this way, we attempt to find the unique least-squares estimate of the SH weights Hnm.
This estimate is only possible if there are more spatial HRTF samples than SH coefficients
to be calculated, i.e. Q > (N + 1)2. In the next section, we will see that this bound is
larger in practice.

If we have our HRTF represented with Hnm, we can perform spatial interpolation,
i.e. calculate the HRTF at any desired angle. Let L represent a set of query angles at
which we wish to estimate individual HRTFs. Then,

HL = YLHnm (2.22)

is the inverse spherical Fourier transform (ISFT) where the query SH transformation
matrix YL is equal to Equation 2.20 with Ω1,Ω2, . . . corresponding to each angle in L.
Accordingly, HL will result in a vector with each element consisting of an HRTF localized
at the corresponding angle in L. In this way, we can spatially interpolate an HRTF.

2.3.2 Spatial Aliasing

In the same way microphones sample time-domain sound pressures, the locations of
fixed-radius HRTF measurements spatially sample the surface of a sphere. This
sampling requires limited bandwidth to prevent spatial aliasing. Moreover, the
uniformity of this sampling with respect to the surface of the sphere is highly important
because it is directly related to the number of measurements Q required to perform the
least-squares estimation. When considering SH decomposition of HRTFs, we are
constrained by measurement apparatuses, which often do not uniformly sample the
sphere. In this section, we will consider SH-encoded HRTFs as mode-limited functions
and discuss this effect on the minimum SH truncation order.

As seen in the previous section, HRTFs can be robustly approximated if we choose a
sufficiently large SH truncation order N :
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HL,R(φ, θ, k) ≈
N∑
n=0

n∑
m=−n

HL,R
nm (k)Y m

n (φ, θ) (2.23)

This approximation can be rewritten using the Jacobi-Anger expansion into a linear
combination of a product of three different types of separable basis functions weighted
by the SH coefficients HL,R

nm (k). For a complete overview of this expansion, see Section
III of [35]. These three types of basis functions are the spherical harmonics, the spherical
Bessel function, and the spherical Hankel function of the first kind. Each of these are
hierarchically organized based on a “mode” index n, for which we will consider truncations
at N . In this way, HRTFs can be considered as mode-limited functions. The spherical
harmonics and the spherical Hankel function of the first kind represent the HRTF spatial
variations whereas the spherical Bessel function and the SH coefficients HL,R

nm (k) represent
the HRTF spectral components.

Figure 2.9: Dependence of the point of decay of the spherical Bessel function jn(ks) on
n for a few values of ks, shown on the vertically shifted curves. From [35].

The lower bound of the truncation orderN is necessary in order to accurately represent
the spatial variations of the HRTF (i.e. prevent spatial aliasing). For a given frequency,
the spherical Bessel function will oscillate up to some N then quickly decay. To fully
include the HRTF spatial variations, we must not truncate the decomposition order until
the spherical Bessel function decays. The length of this oscillation is proportional to the
frequency we are trying to represent such that higher frequencies require larger N . This
relationship can be described as



2. Background 27

N = deks/2e (2.24)

where e is Euler’s number, k = 2πf/c is the wave number, f is the frequency, c = 343 m/s
is the speed of sound, and s is the radius of the smallest sphere surrounding an average
head. A commonly cited value for s is 8.75 cm [36]. This relationship is depicted in
Figure 2.9. The minimum number of HRTF measurements Q required to retrieve HRTFs
corresponding to all directions, then, is given by

Q ≥ (N + 1)2 = (deks/2e+ 1)2. (2.25)

Thus, if we are trying to represent a bandwidth of 20 Hz to 20 kHz (i.e. the range of
audible frequencies), a truncation order N = 46 and number of HRTF measurements on
the sphere Q = 2209 are required. If we do not have enough measurements to satisfy this
criteria, we are still able to decompose the HRTFs at the cost of inaccurate representation
of the higher frequencies.

2.3.3 Spatial Sampling on the Sphere

Schemes for sampling a sphere are studied in a variety of fields [37] [38]. Even within
audio and acoustics, there are many sampling schemes which have desirable properties
for a specific application. For example, T-designs of platonic solids [39] and Fliege nodes
[40] are particularly useful in spherical microphone array processing [41] while Lebedev
grids [42] find application in Ambisonics [43].

In the analysis step of spherical harmonic decomposition of HRTFs, the sampling
scheme chosen has a large impact on the SH representation of the HRTFs. In the
previous section, we showed that at least Q ≥ (N + 1)2 HRTF measurements are
required to accurately construct arbitrary HRTFs. In practice, however, this lower
bound is complicated by a factor λ ≥ 1, i.e.:

Q ≥ λ(N + 1)2 (2.26)

where λ represents an oversampling factor intrinsic to sampling schemes that do not
spatially sample the sphere in a uniform fashion. We must consider λ because HRTF
measurement apparatuses typically do not permit a uniform spatial sampling of the
sphere. In this section, we will present a few schemes for spatially sampling a sphere
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and discuss their advantages and disadvantages.
Equiangular sampling is the process of sampling a sphere with equal spacing in both

azimuth φ and elevation θ:

φi = 2πi√
Q
, i = 0, 1, . . . ,

√
Q− 1 (2.27)

θj = πj√
Q
− π

2 , j = 0, 1, . . . ,
√
Q− 1 (2.28)

where we have Q total samples and have defined 0 ≤ φ < 2π and −π/2 ≤ θ ≤ π/2. The
regular angle differences make this a natural sampling scheme, especially in hardware
measurement setups where a fixed step mechanical rotation in φ and θ is simple.
Moreover, table lookups can be accomplished in O(1) time with basic modulo and
rounding operations. Equiangular sampling, however, suffers from a denser grid near
the poles, which means we are oversampling near the poles and undersampling near the
equator (i.e. not spatially sampling the sphere in the minimum number of samples
necessary for the least-squares estimation). Driscoll and Healy [44] showed that the
oversampling factor λ = 4 for equiangular sampling of bandlimited functions, requiring
2N + 2 samples in both azimuth and elevation.

Because the least-squares SFT will be biased and therefore inaccurate if we have
more samples near the poles, we can compensate for this by appling Voronoi weights to
each measurement. Voronoi weights are coefficients obtained by performing a spherical
Voronoi tesselation of the sampling grid. A spherical Voronoi tesselation is a partition
of the surface area of a sphere into regions defined by the spatial samples on the sphere
where the vertices of each region are the samples closest to each other. The weights,
then, are proportional to the area of these regions (given as a ratio relative to the total
surface area 4πr2) such that groups of samples far apart will be assigned more weight
than groups of samples close together. By using a weighted least-squares SFT, we can
compensate for a non-uniform sampling.

A common sampling scheme used in publicly available HRTF databases is the mixed
equiangular grid. In mixed equiangular grids, the equal spacing between consecutive
angles in azimuth differs from the equal spacing between consecutive angles in elevation.
If we have Qφ samples in φ and Qθ samples in θ,

φi = 2πi
Qφ

, i = 0, 1, . . . , Qφ − 1 (2.29)
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and

θj = πj

Qθ

− π

2 , j = 0, 1, . . . , Qθ − 1 (2.30)

where Q = QφQθ is the total number of measurement points. The weighted least-squares
SFT is then given by

HL,R
nm (k) =

Qθ−1∑
j=0

Qφ−1∑
i=0

αiH
L,R(φi, θj, k)Y m

n (φi, θj)† (2.31)

where αj are the Voronoi weights and Y m
n (φj, θk)† is the Moore-Penrose pseudoinverse of

Equation 2.20. A further extension of the mixed equiangular grid is to vary the number of
azimuths depending on the elevation such that elevations near the poles have less samples
than elevations near the equator [45].

Lebedev sampling is a scheme characterized by the construction of quadratures that
are rotationally-invariant on the sphere [43]. The motivation for this is to find a set
of grid points and corresponding weights that enforce exact integration of the spherical
harmonics up to some order N while maintaining a near-uniform distribution and keeping
the grid small [42]. The sample points and weights can be found in [42] and the references
within. In Lebedev grids, the oversampling factor λ = 1.3, meaning we can reconstruct
the sound field with far less HRTF measurements than equiangular grids.

2.4 HRTF Interpolation via Weighted
Averaging

Another method for estimating arbitrary HRIRs/HRTFs for rendering the anechoic
path in object-based binaural audio is by direct interpolation of the HRIR/HRTF
coefficients. This approach is more simple than using basis functions since it only
involves weighted averages of the nearest HRIRs/HRTFs on the measurement grid.
Many techniques exist for directly interpolating coefficients. These are generally
grouped into bilinear or barycentric methods. Bilinear interpolation of the four closest
points (BI4C) was first suggested by [46] while a simplified version using just three
points was given by [47]. Gamper proposed a method for using barycentric
interpolation in azimuth, elevation, and distance by considering the 3D tetrahedron
surrounding the query point [48]. Most recently, Cuevas-Rodriguez et al. used 2D
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barycentric interpolation of HRIRs to render the anechoic path in the open-source
auralization engine 3D Tune-In Toolkit [3]. In this section, we will review the theory of
the bilinear method.

2.4.1 Bilinear Method

Figure 2.10: Bilinear interpolation of the four closest involves a weighted averaging of
the HRIRs/HRTFs that construct the vertices of the rectangle surrounding the query
angle. From [49].

Bilinear interpolation is only applicable if our HRTF measurement grid has a regular
basis. If this is the case, the bilinear method is simply linear interpolation along two
orthogonal axes.

Consider a mixed equiangular grid with azimuthal spacing φgrid and elevation spacing
θgrid, as in Figure 2.10. Given some query angle (φ, θ), we begin by locating the rectangle
in which this angle exists, where the vertices of the rectangle are defined by known
HRIRs/HRTFs. In Figure 2.10, these four HRIRs are given by ha, hb, hc, and hd. The
interpolated HRIR ĥ[n] is computed as a weighted sum of these four closest HRIRs:

ĥ[n] = (1− Cθ)(1− Cφ)ha[n] + Cθ(1− Cφ)hb[n] + CθCφhc[n] + (1− Cθ)Cφhd[n], (2.32)
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where Cφ = φ− φa and Cθ = θ − θa. Here, (φa, θa) is the location of the HRIR ha.

2.5 FFT-Based Convolution for Real-Time
Auralization

In order to properly compare N -th order SH decomposition (SHD-N) of HRTFs with
bilinear interpolation of the four closest (BI4C) in terms of computational cost, we must
consider their implementation in an auralization engine. A fair computational cost
comparison should attempt the most efficient implementation of both interpolation
techniques, which should include the convolution step (convolution of the interpolated
HRIRs with each source signal). As such, in this section, we’ll review fast convolution
techniques and their incorporation in a real-time auralization engine.

2.5.1 FFT-Based Fast Convolution

Ever since the legendary paper by Cooley and Tukey describing the fast Fourier transform
(FFT) was published in 1965 [50], the FFT has become one of the most important and
ubiquitous tools in signal processing. It is an algorithm for efficiently computing the
discrete Fourier transform which is regarded as one of the ‘top ten algorithms of the
(20th) century’ [51]. The method that applied the FFT to convolution was given by
Stockham in 1966 [52]. Today, when people refer to fast convolution techniques, they are
almost always referring to FFT-based convolution.

Convolution can be utilized in a variety of contexts. In this thesis, we are interested
in the most efficient implementation of real-time FIR filtering using general purpose
processors (i.e. not specialized DSPs). For real-time audio on these processors, we are
constrained to block-based processing; that is, the real-time audio stream is partitioned
into blocks (also called frames) of samples on which we perform signal processing tasks.
Let B denote the block length. Typical values for B are powers of two such as 64, 128,
256, 512, or 1024 samples. At a sample rate of 44.1 kHz, these correspond to block
durations TB of 1.45 ms, 2.90 ms, 5.80 ms, 11.61 ms, and 23.22 ms, respectively. At the
beginning of every audio cycle (i.e. block), a vector of B input samples is provided by
some component. At the end of that cycle, a vector of B output samples is requested
by the audio driver for playback. The time in-between the input and output transfers
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can then be used to perform signal processing tasks on the current block. It is important
that the computational cost of the signal processing does not exceed the block duration in
order to not cause dropouts in the playback. In practice, intermediate operations (such as
the transportation of the blocks between the audio device and CPU) consume additional
time so typically only 90-95% of the block duration can be spent on signal processing [7].

Consider the linear convolution of a length-M time-domain input block x[n] with a
length-N impulse response h[n]:

y[n] = (x ∗ h)[n]. (2.33)

Convolution can be accomplished via element-wise multiplication of coefficients in the
frequency-domain:

y[n] = DFT −1
(K) { DFT (K) { x[n] } × DFT (K) { h[n] } } (2.34)

where DFT (K) { · } is a K-point discrete Fourier transform (DFT) operator. The
transform size K must satisfy K ≥ M + N − 1. To perform the K-point DFTs, both
x[n] and h[n] are zero-padded to length K. Then, the steps involved in FFT-based
convolution are K-point forward FFTs of both x[n] and h[n], K complex-valued
multiplications, and a single K-point inverse FFT (IFFT). The first M +N − 1 samples
of the IFFT output correspond to the linear convolution of x[n] and h[n].

The algorithms behind the state-of-the-art FFT libraries are outside of the scope of
this thesis. It is pertinent, though, that the computational cost of an FFT is non-trivial
relative to the other operations in the HRTF interpolation and anechoic path rendering
algorithms.

For real-time FIR filtering, the input is partitioned into uniform blocks of length B, as
previously discussed. However, using the above convolution algorithm on each individual
block would cause artefacts at the edges of each output block. Therefore, we must
rely on a set of algorithms designed to perform running convolutions on the partitioned
input. In 2015, Wefers published a comprehensive overview of these algorithms, including
benchmarks [7]. For the most efficient realization of real-time FIR filtering, the algorithm
to choose depends on the length N of the impulse response relative to the block length
B. Wefers suggests using either the Overlap-Add (OLA) [53] or Overlap-Save (OLS)
[19] methods for short filters N ≤ B. Uniformly partitioned convolution algorithms are
suggested for B < N < 20B while non-uniformly partitioned convolution algorithms are
proposed for long filters N ≥ 20B. Since HRIRs are typically shorter than common block
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lengths, we will only consider the conventional OLS and OLA methods for implementing
FFT-based convolution. Moreover, both OLS and OLA require the same number of FFTs,
IFFTs, and complex-valued multiplications. However, OLS avoids some extra additions
that are necessary in OLA. For this reason, only OLS will be explored in the context of
this thesis.

2.5.2 Overlap-Save Method

Figure 2.11: FFT-Based running convolution incorporating the Overlap-Save method
for real-time FIR filtering. From [7].

The Overlap-Save Method is a technique for incorporating unpartitioned convolution
techniques with partitioned input signals (e.g. block-based audio processing). The
algorithm is shown in Figure 2.11. A length-K sliding window s[n] of the input is
constructed. At the beginning of each audio cycle, the contents of this window are
shifted left by B samples, with the left-most B samples discarded. The input block is
copied into the right-most B samples of the sliding window s[n]. A K-point
real-to-complex (R2C) FFT of s[n] is performed. Since all K input values are
real-valued, the corresponding DFT spectrum S(k) holds Hermitian symmetry [19]:



2. Background 34

S(k) = S(K − k)∗ (2.35)

The presence of complex-conjugate symmetry means that half of the K DFT coefficients
are redundant. Therefore, the entire DFT spectrum can be constructed from just C
complex-conjugate symmetric coefficients where

C =
⌈
K + 1

2

⌉
. (2.36)

The impulse response h[n] is zero-padded to length K and also FFTed. Then, each of the
C coefficients in the spectra S(k) and H(k) are pairwise multiplied with complex-valued
multiplication. A K-point complex-to-real (C2R) IFFT is performed and only the final
B samples are saved and sent to the output block.

If the impulse response h[n] can be zero-padded and FFTed offline, the entire
computational cost of FFT-based convolution with the OLS method is then the cost of
shifting and copying into the sliding window, twice the cost of a K-point R2C FFT, the
cost of K complex-valued multiplications, the cost of a K-point C2R IFFT, and the
cost of truncating K −B time-aliased samples.

2.5.3 Filter Exchange Strategies

Ideally, a virtual acoustics auralization engine would be resilient to movement of sources
in the space over time. Since the location of a source in the virtual space is simply given
as the source signal convolved with the corresponding HRIR, moving sources corresponds
to instantaneously exchanging HRIRs measured or interpolated at the locations we are
interested in. However, it is not natural from a listener’s perspective for sound objects
to jump to different locations in a discontinuous fashion. Therefore, we need a way to
apply a cross-fade between consecutive audio frames for each source in order to create
the illusion of a sound moving smoothly across the space.

In 2014, Wefers and Vorlaender published a technique for cross-fading consecutive
FIR filters based on operators working on the DFT spectra [54]. The technique can
easily be incorporated in the OLA or OLS methods for real-time FFT-based convolution.
The DFT operators are derived by considering the DFT of the time-domain sinusoidal
amplitude envelopes
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fin[n] = sin2
(
πnP

K

)
(2.37)

fout[n] = cos2
(
πnP

K

)
(2.38)

where the sum of these maintains unit amplitude:

f = fin[n] + fout[n] = sin2
(
πnP

K

)
+ cos2

(
πnP

K

)
= 1. (2.39)

Here, the transform size K must be an integer multiple P of double the block length B

P = K

2B ∈ N (2.40)

in order for the right-most B samples to coincide with a half-period of the envelopes.
This is illustrated in Figure 2.12.
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Figure 2.12: Fade out fout and fade in fin envelopes must coincide with the right-most
B samples of the FFT buffer in order to be applied to the time-domain samples after the
IFFT.

It is certainly possible to cross-fade by simply multiplying the amplitude envelopes
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in Figure 2.12 to the time-domain filtered signals and sending the sum to the output. In
other words, if we are exchanging the current audio buffer filtered by the impulse response
from the previous audio cycle y0[n] for the current audio buffer filtered by the impulse
response from the current audio cycle y1[n], we could write

y[n] = fout[n]y0[n] + fin[n]y1[n]. (2.41)

Figure 2.13: Overlap-Save FFT-based convolution with frequency-domain cross-fading.
From [54].

But, Wefers showed via benchmarking that it is more efficient to apply these envelopes
with frequency domain operations on the DFT spectra Y0(k) and Y1(k), which correspond
to the current source buffer filtered by the previous impulse response and current impulse
response, respectively. This is given as

Y (k) = K
[
Y0 〈k〉K + Y1 〈k〉K + 1

2[Y1 〈k + P 〉K − Y0 〈k + P 〉K + Y1 〈k − P 〉K − Y0 〈k − P 〉K ]
]
,

(2.42)
where 〈·〉K denotes the K-periodic continuation of each spectra. The incorporation of
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this cross-fading into FFT-based convolution with the OLS method is shown in Figure
2.13 where the fade-out and fade-in DFT operators F0 and F1 are

F0{Y0(k)} = −K2 Y0 〈k + P 〉K +KY0 〈k〉K − Y0 〈k − P 〉K (2.43)

and

F1{Y1(k)} = K

2 Y1 〈k + P 〉K +KY1 〈k〉K + Y1 〈k − P 〉K . (2.44)

In Chapter 4, we will discuss how to incorporate bilinear interpolation of the four closest
(BI4C) and N -th order spherical harmonic decomposition (SHD-N) into the algorithm
shown in Figure 2.13 order to properly compare computational costs.
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Chapter 3

Reconstruction Error Analysis

An ideal HRTF interpolation scheme should return a function identical to an HRTF
measured at that location. Therefore, to measure the interpolation quality of SHD-N
and BI4C, we can attempt to reconstruct measurements with each scheme. In BI4C, we
delete the HRTF to be reconstructed from the HRTF set before interpolation in order
to see how well that measurement could be constructed if it did not exist. In SHD-N ,
we do not need to delete measurements since interpolation is performed solely based on
a linear combination of spatial basis functions. By comparing the reconstructed HRTF
with the original measured HRTF with an error function, we can determine the quality
of reconstruction as measured by our error function.

We will begin this chapter by presenting and motivating the error function and
reconstruction locations. Next, we will validate SHD-N and BI4C by giving examples of
reconstruction. Then, spherical harmonic matrix conditioning issues will be discussed.
After that, we will show the spatial distribution of reconstruction error on the surface of
the sphere. Finally, we will present and discuss the results of the comparison by
showing how BI4C performs with respect to SHD-N for many N and for different
measurement grids.
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3.1 Reconstruction Error Function

3.1.1 Definition

Our reconstruction error is defined as

ε = 10 log10
||HL − ĤL||2
||HL||2

(3.1)

where HL is the set of original HRTFs measured at L desired locations and ĤL is the
set of interpolated HRTFs reconstructed at the L desired locations without using the
original L measurements. In other words, a measured HRTF H(Ωl, k) is deleted from the
original set, then reconstructed using the remaining measurements to obtain Ĥ(Ωl, k).
The average dB error εavg across directions was computed as a dot product with the
Voronoi sampling weights to compensate for the non-uniform spherical distribution:

εavg = εq · wq (3.2)

where εq is the dB reconstruction error for the q-th location and wq is the Voronoi weight
corresponding to that location.

The HRTF magnitude responses are evaluated for frequencies between 50 Hz and 20
kHz along a perceptually-informed frequency axis called the Bark scale. The Bark scale
is a psychoacoustical scale proposed by Edward Zwicker in 1961 [55]. It is a frequency
scale where each frequency corresponds to the center frequency of a critical band along
the basilar membrane in the cochlea. Therefore, the distances between Bark frequencies
agree with how we perceive differences in frequency.

3.1.2 Reconstruction Locations

For a fair comparison of reconstruction error, the interpolation should be performed
at locations that theoretically correspond to the worst-case interpolation quality. We
expect that reconstruction error is highest at points furthest from measurement points.
For example, in equiangular grids, the reconstruction points should be located at the
midpoint of the square created by the four closest grid points, as shown in Figure 3.1.
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Figure 3.1: Zoomed-in example of equiangular measurement lattice and theoretically
worst-case reconstruction locations. The measurement lattice has been mapped onto a
Euclidean plane and uses 10◦ spacing in both azimuth and elevation.

In practice, however, this scheme is only applicable to the BI4C algorithm. In SHD-
N , reconstruction quality is not a function of the reconstruction location on the sphere.
That is, reconstruction will have similar quality at all points on the sphere. Therefore,
for our analysis of reconstruction error, we will reconstruct halfway between grid points
for BI4C and at grid points for SHD-N (since the reconstruction location does not matter
for SHD-N).

3.2 Validation of Interpolation Techniques

In this section, we will introduce our analysis framework and provide examples of
interpolated HRTFs relative to the original measurements for many SH orders and grid
sizes. All reconstruction will be performed only for left ear HRTFs. Two HRTF
databases will be used for their desirable measurement grids: The SADIE II Database
from the Department of Electrical Engineering, University of York [16] and the ITA
HRTF-database from the Institute for Hearing Technology and Acoustics at RWTH
Aachen University [15].

The SADIE II Database includes HRIR data for 20 subjects (two mannequins and
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18 humans) sampled at 15◦ elevation increments and variable azimuthal increments.
Additionally, it includes measurements for various Ambisonic loudspeaker
configurations: Octahedron (x3 orientations), Cube, Bi-Rectangle (x3 orientations),
Icosehedron, 7-Design, 26pt Lebedev Grid, Pentakis Icosedodecahedron and 50pt
Lebedev Grid. For the most densely sampled subjects (the two mannequins), azimuth is
sampled at 1◦ increments, resulting in a total of 8802 measurements which contains a
1◦ × 15◦ mixed equiangular grid. In Section 2.3.3, we discussed how Lebedev spherical
sampling schemes are preferable because they allow for decomposition of sound fields
with fewer measurements relative to equiangular and mixed equiangular schemes.
Therefore, in this thesis, we will be considering subsets of the 1◦ × 15◦ mixed
equiangular grid as well as the 26pt and 50pt Lebedev grids.

The ITA HRTF-database includes HRIR data for 48 human subjects sampled on a
5◦×5◦ equiangular grid. The advantage of this database is the finer resolution in elevation,
allowing for BI4C on a 10◦× 10◦ grid in order to compare reconstruction at the center of
each 10◦ × 10◦ square. One disadvantage, however, is that the measurement apparatus
did not permit measurements at elevations below −65◦. Therefore, we cannot perform
BI4C to compare reconstruction at these angles.
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Figure 3.2: Examples of HRTFs spatially interpolated with bilinear interpolation of
the four closest (BI4C) compared to the original measured HRTF for three locations on
the sphere. The measurement lattice used is a 10◦ × 10◦ equiangular grid from the ITA
HRTF-database [56]. Reconstruction locations are at the center of squares created by
the grid points.

Figure 3.2 shows three examples of a measured HRTF and the same HRTF
reconstructed via bilinear interpolation of the four closest. Although they are a small
sample size, these plots indicate BI4C is highly precise for frequencies less than 3000 Hz
with the potential for good reconstruction above this threshold, as seen in the bottom
plot.
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Figure 3.3: Examples of HRTFs spatially interpolated with 3rd, 6th, 9th, and 12th
order SHD compared to the original measured HRTF for three locations on the sphere.
The spherical harmonic basis functions were constructed with a weighted least-squares
SFT of the 5◦ × 5◦ equiangular grid in the ITA HRTF-database [15].

Figure 3.3 shows three examples of the original measured HRTF compared with
interpolation of that HRTF via 3rd, 6th, 9th, and 12th order spherical harmonic
decomposition. The SHD-N was performed using the real spherical harmonics, a
convention that has been adopted in Ambisonics [57]:

Y m
n (φ, θ) = N |m|n P |m|n sin(θ)


cos(|m|φ) if m ≥ 0

sin(|m|φ) if m < 0
(3.3)

where φ is the azimuth angle, θ is the elevation angle, n is the SH order, m is the
SH degree, and P |m|n are the associated Legendre polynomials with the Condon-Shortley
phase undone. The Condon-Shortley phase is a factor (−1)m included in some quantum
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mechanical formulations of the spherical harmonics that inverts the relative polarity of
every other SH function. In Ambisonics, we must undo it by applying it again in order
to prevent distortions during rendering.

The normalization term N |m|n adopted in Ambisonics is called SN3D and is computed
as

N |m|n =

√√√√(2− δm)(n− |m|)!
(n+ |m|)! . (3.4)

From these plots, we notice SHD-N struggles at reconstructing the higher frequencies,
with error being lower for higher orders. At lower frequencies, BI4C and SHD-N are
comparable in terms of reconstruction, with the quality of each being dependent on the
spherical location.

3.3 Spherical Harmonic Matrix
Conditioning Issues

In spherical harmonic decomposition of HRTFs, the spherical harmonic transformation
matrix Y m

n is applied to the HRTF measurements in order to build the basis functions
Hnm. This matrix is given as

Y m
n =



Y 0
0 (Ω1) Y 1

−1(Ω1) . . . Y M
N (Ω1)

Y 0
0 (Ω2) Y 1

−1(Ω2) . . . Y M
N (Ω2)

... ... . . . ...
Y 0

0 (ΩQ) Y 1
−1(ΩQ) . . . Y M

N (ΩQ)

 (3.5)

where Ω1,Ω2, . . . ,ΩQ are the locations of the Q HRTF measurements on the sphere,
specified by ordered pairs (φq, θq). The Y m

n are computed as in Equation 3.3.

3.3.1 Precision Issues

To perform the Spherical Fourier Transform and retrieve the basis functions Hnm, a
weighted least-squares pseudoinverse is computed, as in Equation 2.21. A classic matrix
inverse Y −1 only exists if Y is square and it’s determinant is non-zero. Here, we have
omitted the indices n and m for conciseness. Since the SH transformation matrix Y has
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dimensions Q×(N+1)2, we are interested in a least-squares solution to the linear system.
The pseudoinverse defined as

Y † = (Y HY )−1Y H (3.6)

is a generalization of the classic inverse to rectangular matrices, where Y H is the
conjugate-transpose of Y . Computing this pseudoinverse must require the term Y HY

to have a non-zero determinant (i.e. be non-singular) since a classic inverse of that term
is computed.

The term (Y HY )−1 can be expanded to

(Y HY )−1 = 1
det(Y HY )

adj(Y HY ) (3.7)

where adj(Y HY ) is the adjugate matrix of Y HY . Here, we can see that the determinant
of Y HY must be non-zero. Moreover, increasing the SH order from N−1 to N results in
the addition of 2N + 1 columns to Y . Therefore, the term det(Y HY ) grows very quickly
as we go to higher order. In double-precision arithmetic (e.g. the IEEE 754 standard),
computers can perform computations on numbers that are within about 16 orders of
magnitude with each other. As we increase SH order N , there is a critical point where
the term 1/det(Y HY ) becomes so small relative to the elements of adj(Y HY ) that the
computer can no longer distribute it to those elements because it gets lost in precision
noise. At this point, the computer rounds it to zero, the matrix becomes singular, and
no inverse exists. It is therefore necessary to keep the SH order low enough such that
the pseudoinverse does not involve computations with numbers more than 16 orders of
magnitude apart from each other.

When computing a pseudoinverse in MATLAB, MATLAB will check for this issue by
calculating the condition number of the matrix involved. The condition number κ of a
matrix Y can be computed as the ratio of the maximum singular value to the minimum
singular value of the matrix Y :

κ(Y ) = σmax(Y )
σmin(Y ) (3.8)

where σmax(Y ) and σmin(Y ) represent the maximum and minimum singular values of the
matrix Y , respectively. Using the condition number as an indicator of matrix singularity
is more robust than calculating a determinant because determinants of a non-singular
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matrix can be arbitrarily close to zero.

3.3.2 Measurement Error Robustness

Another property of condition numbers is that they can describe the sensitivity of the
output of a matrix to perturbations of the input. In other words, it will represent the
factor by which noise at the input will be amplified at the output. Perturbations of
the spherical harmonic transformation matrix exist as small errors in the positioning
of loudspeakers and microphones during the HRTF measurement stage. Because the
spherical harmonics are essentially solutions to the wave equation in spherical coordinates,
the expectation is that measurement speakers are placed exactly at the locations specified
so that the wave equation can be utilized. However, if the condition number is low,
the SH transformation matrix will be robust to these errors to some extent. Reddy
and Hegde gave an optimization-based approach for minimizing the SH transformation
matrix condition number by selecting rectangular sub-matrices of a dense grid with low
condition numbers [58]. In this work, we are constrained to measurements available in
publicly released HRTF datasets, which are typically measured on grids that are not
optimized to have low condition numbers when Y is computed.
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Figure 3.4: Plot of condition number κ(N) for orders N = 1, 2, . . . , 12. The order
12 condition number κ(12) ≈ 1.26 × 1016. The point where the condition number
disproportionately increases is a strong indicator of singularity.

3.4 Spherical Distribution of
Reconstruction Quality

In this section, we will explore how BI4C and SHD-N differ with respect to the spatial
distribution of reconstruction quality according to our error function. A key difference
between the two interpolation techniques is their consistency of reconstruction quality
with respect to locations on the sphere. This discrepancy is seen by comparing Figures
3.5 and 3.6.
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Figure 3.5: Spatial distribution of BI4C reconstruction error performed on a 15◦ ×
15◦ equiangular grid, reconstructing halfway between grid points in azimuth. Weighted
average reconstruction error: -6.24 dB. Weighted standard deviation: 3.59 dB.
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Figure 3.6: Spatial distribution of SHD-10 reconstruction error using basis functions
computed with a weighted least-squares SFT of a 15◦ × 15◦ equiangular grid.
Reconstruction performed at grid points. Weighted average reconstruction error: -5.91
dB. Weighted standard deviation: 1.35 dB.

In Figure 3.5, error is shown for BI4C performed on a 15◦ × 15◦ equiangular grid,
reconstructing halfway between azimuth points. The reconstruction error is computed for
each reconstruction location and plotted according to the color axis. Here, the sphere has
been mapped onto a Euclidean plane for conciseness. The weighted average reconstruction
error for this set is -5.05 dB. However, we notice that reconstruction is poor on the median
plane (front/back and up/down) and good on the lateral plane (left/right and up/down).
The weighted standard deviation of these errors is 3.59 dB.

In Figure 3.6, reconstruction via 10th order SHD is performed at the grid points with
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error shown on the color axis. The basis functions Hnm were computed with a weighted
least-squares spherical Fourier transform of HRTFs measured on a 15◦× 15◦ equiangular
grid. The scaling of the color axis is identical to Figure 3.5. The weighted average
reconstruction error for these points is -5.91 dB. The error in this case is more uniform
with respect to spherical distribution, with a weighted standard deviation of 1.35 dB.

The two plots have similar average errors but differ in terms of the standard
deviation. Therefore, if one values spatial consistency of reconstruction when choosing
an interpolation technique, SHD might be preferred. It should be noted, however, that
computing 10th order SHs to achieve as good reconstruction as BI4C for a given grid
will result in higher computational costs relative to BI4C, as we will see in the next
section. Figure 3.7 shows error resulting from BI4C on a 10◦ × 10◦ equiangular grid,
reconstructing at the center of the squares specified by the grid points (as in Figure
3.1). As discussed earlier, we expect this is where reconstruction is worst. Since the ITA
HRTF-database was used, elevations below −65◦ were not available. These points give a
weighted average reconstruction error of -5.69 dB with a weighted standard deviation of
1.74 dB. Note: the color axis scaling has changed.

In contrast, Figure 3.8 is reconstruction via 7th order SHD, using the same 10◦× 10◦

equiangular grid for both the analysis points and reconstruction points. This set has a
weighted average reconstruction error of -5.76 dB with a weighted standard deviation of
1.53 dB.

Figures 3.7 and 3.8 again have similar average errors but this time with similar
standard deviations. The difference in standard deviation between Figures 3.6 and 3.8
can be explained by the distinct reconstruction locations. By introducing interpolation
along the elevation axis in conjunction with the azimuth axis, the output is prone to
more error. This fact combined with higher density of points near the poles permitting
smaller HRTF spatial variations can account for the good reconstruction seen in Figure
3.8.
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Figure 3.7: Spatial distribution of BI4C reconstruction error performed on a 10◦ × 10◦

equiangular grid, reconstructing at center of square formed by grid points. Weighted
average reconstruction error: -5.69 dB. Weighted standard deviation: 1.74 dB.
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Figure 3.8: Spatial distribution of SHD-7 reconstruction error using basis functions
computed with a weighted least-squares SFT of a 10◦ × 10◦ equiangular grid.
Reconstruction performed at grid points. Weighted average reconstruction error: -5.76
dB. Weighted standard deviation: 1.53 dB.

Figure 3.9 shows reconstruction via SHD-5 on a 50pt Lebedev grid. Here, the weighted
average reconstruction error is -4.51 dB with a weighted standard deviation of 1.39 dB.
This plot indicates the ability to achieve as good reconstruction as a SHD-7 of a 10◦×10◦

grid but with only 50 measured HRTFs, as opposed to 630 (the number of grid points on
a 10◦ × 10◦ grid).
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Figure 3.9: Spatial distribution of SHD-5 reconstruction error using basis functions
computed with a weighted least-squares SFT of a 50pt Lebedev grid. Reconstruction
performed at grid points. Weighted average reconstruction error: -4.51 dB. Weighted
standard deviation: 1.39 dB.

3.5 Comparison of SHD-N and BI4C
Reconstruction Error

This section presents results showing the relative quality of interpolation of the two
techniques studied in this thesis. We are interested in showing how various truncation
orders of spherical harmonic decomposition fare against BI4C performed on various grid
sizes. By doing this, we are able to build a more complete picture of the performance
tradeoffs of these two HRTF interpolation methods.

Our analysis was conducted for both equiangular and mixed equiangular grids. For
all cases, the SH basis functions HL,R

nm should be built on the most dense grid available
to achieve the best reconstruction since there is no additional cost related to more
measurements once encoded into SHs. Including additional measurements will add more
resolution to the spatial variations of the HRTF, as well as allow for higher SH orders
by keeping the condition number lower (as demonstrated in Section 3.3). In the context
of this work, the most dense mixed equiangular grid is the 1◦ × 15◦ grid available in the
SADIE II database [16] while the most dense equiangular grid is the 5◦ × 5◦ grid
available in the ITA HRTF-database [15].

For BI4C, there are additional tradeoffs to be taken into account when arguing for
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more dense measurement grids. All these measurements ideally are stored in cache for
quick access and denser grids could prevent this from happening. For this reason, we
have shown relative error of reconstruction for a few grid densities. These grids along
with their dB reconstruction error are found on the horizontal lines in Figures 3.10 and
3.11. Figure 3.10 gives relative errors of reconstruction for the mixed equiangular case
while 3.11 is for the equiangular case.
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Figure 3.10: Relative reconstruction errors for BI4C performed with five mixed
equiangular grids compared to 12 orders of SHD-N performed with a 1◦ × 15◦ mixed
equiangular grid.
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Figure 3.11: Relative reconstruction errors for BI4C performed with three equiangular
grids compared to 12 orders of SHD-N performed with a 5◦ × 5◦ equiangular grid.

3.5.1 Discussion

Inspecting Figures 3.10 and 3.11, we notice that interpolation improves for both denser
grids of BI4C and higher orders of SHD-N . This is expected, as in both cases there is
more information available during the reconstruction, leading to better quality. It
should be noted, though, that all data in these plots are computed as a weighted
average reconstruction error over all grid points, where the weights are the Voronoi
tessellation weights. If spherical consistency of reconstruction is desired, the results of
the previous section show that SHD-N provides more consistent reconstruction with
respect to location on the sphere. Future work should include subject-based listening
tests to validate the importance of spherical reconstruction consistency. It is difficult to
draw generalized conclusions about the superiority of either algorithm based on these
plots, since it is entirely based upon the truncation order N and grid density chosen.
The plots do indicate, however, that BI4C gives lower reconstruction error if only sparse
measurement grids are available. For example, one would need to use 7th order SHD
and have a 5◦ × 5◦ equiangular measurement grid to achieve as good reconstruction as
BI4C with the much coarser 20◦ × 20◦ grid.
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Chapter 4

Computational Cost Analysis

The second metric used in this thesis for comparing BI4C and SHD-N is the
computational complexity of each algorithm. This research is motivated by an effort to
understand the tradeoffs of each algorithm by studying quantitative benchmarks. While
a purely theoretical analysis of each interpolation technique is possible, it would be
difficult to make objective statements about their actual performance on a computer.

In this chapter, we will discuss the process of modeling computational cost via
benchmarking, describe our test systems, explain and motivate the configurations used
to measure computational cost, give implementation details, and show our results.

4.1 Modeling Cost with Benchmarks

Improvements in hardware design over the years have necessitated an empirical approach
to studying computational cost. In the past, algorithms were often optimized according to
the performance of the available hardware. For example, multiplications were executed
much slower than additions, so one might try to build algorithms that minimize the
number of multiplications. These days, advancements in computer architecture such
as cache hierarchies, pipelining, and compiler optimizations have made theoretical cost
models much more difficult. Still, as we will see, understanding the basic costs of the
signal processing algorithms can help to understand benchmarks.

This thesis will attempt efficient C++ implementations of both BI4C and SHD-N ,
measuring the time it takes to execute them for different initial conditions (block lengths,
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number of sources, numerical precision). In this chapter, it is assumed that we are
operating in an auralization framework that is providing some number of time-domain
source signals with associated angle metadata corresponding to direct field or reflection
wavefronts as input at the beginning of every audio cycle. An audio cycle, here, refers
to a single buffer in a real-time audio thread. At the end of each cycle, the framework
requests a stereo time-domain buffer corresponding to the aggregated sources auralized at
their respective angles. Auralized, in this context, simply means rendering some acoustic
path via convolution with an HRIR.

Both BI4C and SHD-N are characterized by a high number of arithmetic operations
and consistent memory access patterns. Their main difference is how the number of
convolutions scales with the number of sound sources to be rendered. The advantage of
SHD-N is that we can render an arbitrary number of sources with (N + 1)2

convolutions. Conversely, in BI4C, we must convolve per source. Since convolution is
performed via multiplication in the frequency-domain, a major source of cost is the cost
of the FFT. State-of-the-art FFT algorithms such as the modified split-radix technique
given by Johnson and Frigo [59] can compute K-point FFTs in O(K logK) in the
average case. This complexity is substantial compared to the rest of the operations and
therefore must be taken into account when considering these two interpolation
techniques.

There are of course an infinite number of feasible parameter configurations we can
choose from to study computational cost. The performance of each will be a function
of a large number of factors such as hardware platform, algorithm implementation, FFT
implementation, architecture-specific compiler optimizations, SIMD (single instruction,
multiple data) vectorization instruction sets, arithmetic precision, and much more. A
comprehensive overview of each of these would be nearly impossible. In this thesis, we
are interested in the average use case: efficient, yet straightforward implementations on
general-purpose processors. Section 4.4 will explore the test system more in-depth.

4.2 Pre-Processing vs. Real-Time
Components

As discussed in Chapter 2, continuous HRTF representations are highly desirable due to
their aid in simulating arbitrary source angles for virtual acoustic rendering. Continuous,
in this sense, can be regarded in a few ways. One way would be to define it perceptually,



4. Computational Cost Analysis 56

i.e. the HRTF measurement grid is dense enough that our brain cannot discern distances
between sources rendered with adjacent HRTF measurements. This would require the
HRTFs to be measured or interpolated on a grid with resolution at least as fine as the
minimum audible angle (the smallest change in source angle that we can perceive). This
angle is direction dependent but can be as low as 1◦ [1]. An equiangular grid with 1◦

spacing in azimuth and elevation would require a total of 64,800 HRIRs. These could
be measured or interpolated with any precise technique (e.g. very high order SHD-N or
BI4C of minimum-phase HRIRs with customized ITDs added as delay lines) since the
interpolation would happen offline. If each HRIR is 256 samples long, however, this table
would be over 132 MB in double-precision format, well over the size of most caches.
Looking up data from a table this large would be a slow process for most architectures
and therefore likely not viable for real-time applications.

On the other hand, computing spherical harmonics is a computationally expensive
process due to the various trigonometric and arithmetic functions involved, making it
also difficult to do in real-time. Since N -th order spherical harmonic decomposition uses
only (N+1)2 SH coefficients to represent an arbitrary sound field, a dense lookup table of
these coefficients could be stored in cache and the coefficients corresponding to the angle
closest to the query angle could be retrieved in real-time to avoid the cost associated with
computing them. Therefore, we are interested in algorithms that avoid costly operations
while also keeping lookup tables small so that cache can be utilized. Of course, the
trade-off between lookup table size and processing power will be unique to the given
hardware platform and these observations may not be generalizable. Still, in order to
provide quantitative benchmarks, we have chosen to perform SHD-N by retrieving the
(N + 1)2 coefficients for a given source angle with a lookup table computed on a dense
grid. This grid will be described in the next section.

4.3 Implementation Details

4.3.1 SHD-N

Fibonacci Lattice Lookup Table

As we have discussed, looking up SH coefficients in a table is more cost-effective than
computing them in real-time. The task, then, is to select a spherical sampling scheme on
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which to build the SH coefficient lookup table that is suited for real-time applications.
In this sense, suited for real-time means keeping this table small in order to keep it in
cache while also attempting a perceptually-continuous HRTF representation. Moreover,
lookups should happen in O(1) time. That is, we want to quantize the incoming source
query angle to the lookup table grid points by quickly locating the nearest grid point and
returning the set of coefficients corresponding to that point.

One possibility for this would be an equiangular grid. An advantage of equiangular
grids is they have a regular basis, so lookups are a matter of simple rounding and modulo
operations. Equiangular grids suffer from redundancies near the poles, however, meaning
the table would be unnecessarily large. Another possibility is the M -point Lebedev grid.
These sample the sphere more uniformly but it would be difficult to locate the nearest
grid point in real-time as the table would not have a regular basis. Moreover, the table
sizes could not be arbitrary since Lebedev grids only exist for a discrete set of grid sizes.

Instead, we have chosen to build the lookup table on a Fibonacci lattice. A Fibonacci
lattice is yet another technique for sampling the sphere commonly used in mathematical
geosciences [60]. This scheme is perhaps the most uniform sampling scheme since the
area represented by each grid point is almost identical. It is characterized by a spiral
tightly wound on the surface of the sphere, with each point fitted into the largest gap
between the previous points. The packing efficiency of grid points is optimized by using
the golden ratio to determine the spacing between points. More precisely, let S be any
positive integer and let the integer i range from −S to S. The spherical coordinates of
the i-th point in radians are then given by

φ = 2πiΦ−1 (4.1)

θ = sin−1
( 2i

2S + 1

)
(4.2)

where Φ = (1 +
√

5)/2 is the golden ratio. The total number of grid points is 2S + 1.
Figure 4.1 shows an example of an equiangular grid and Fibonacci lattice of similar sizes.
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Figure 4.1: 1014 point equiangular lattice (top) and 1001 point Fibonacci lattice
(bottom). The Fibonacci grid does not suffer from higher density near the poles. From
[60].

Although the Fibonacci lattice does have a closed form expression, finding the nearest
grid point given a query angle is still a difficult task which cannot be solved in O(1) time.
Therefore, for this thesis, we have resampled a Fibonacci lattice onto a special mixed
equiangular grid which promotes both uniformity with respect to the sphere as well
as fast quantization and lookups. This resampling was performed by first dividing the
elevation axis into Qel bins of equal size such that the i-th bin contains elevations in the
interval

[
−π
2 + iπ

Qel

,
−π
2 + (i+ 1)π

Qel

)
(4.3)

where i = 0, 1, . . . , Qel−1. Next, each Fibonacci lattice point was assigned to a bin if the
elevation angle of that point falls in the interval specified by that bin. In this way, we
can build a histogram of the distribution of the number of azimuths along the elevation
axis, as shown in Figure 4.2. This sampling is similar to the grid chosen by the MIT
KEMAR HRTF database [45]. Let each bin be identified by it’s center angle, denoted
as θi. Let the elevation-dependent number of azimuths be denoted by Qaz(θi). Finally,
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a grid is constructed by equally spacing Qaz(θi) azimuths at elevation θi. An example of
this is shown in Figure 4.3.
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Figure 4.2: Distribution of number of azimuths for 37 equally-spaced elevation bins on
a 2003 point Fibonacci lattice.
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Figure 4.3: Example of a 2003 point equiangular grid with elevation-dependent
azimuthal resolution sampled from a Fibonacci lattice.
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Algorithm

This section describes how interpolation via SHD-N was incorporated into the framework
for fast convolution with partitioned input signals (e.g. block-based audio processing). As
discussed in Section 2.5, real-time FIR filtering of audio on general purpose processors
is constrained to the block-based approach, where the input is partitioned into length-B
blocks on which signal processing can be performed. Moreover, efficient FIR filtering is
often implemented with FFT-based convolution. To incorporate FFT-based convolution
with partitioned input signals, the overlap-save method can be applied. This method
involves convolution using overlapped audio blocks in order to prevent artefacts at the
edges of the output.

In Section 2.5.3, we discussed a method for crossfading consecutive audio buffers in
order to create the illusion of sources moving throughout the virtual space in a continuous
fashion. This method was based on frequency-domain operators acting on the spectra
of adjacent output buffers [54]. A block diagram implementing FFT-based convolution
with the overlap-save method and frequency-domain crossfading is shown in Figure 2.13.
Algorithm 1 shows how SHD-N is incorporated into this process. Let K denote the size
of all FFTs, B denote the length of each audio block, and numSources denote the total
number of sources to be rendered. In general, terms with the subscript 0 refer to the
previous audio cycle and terms with the subscript 1 refer to the current audio cycle. We
need to store information about the HRTF interpolated from the previous audio cycle
so that we can convolve the current source buffers with both the previous and current
HRTFs in order to crossfade the two.

The K × (N + 1)2 matrix containing the SH-encoded HRTFs (i.e. the frequency-
domain basis functions HL,R

nm ) are computed offline and stored in a table. Additionally,
the SH transformation matrix lookup table Ynm is computed offline according to the
Fibonacci lattice lookup table described previously. For each source, we retrieve the
angle at which this source is to be localized and find the nearest angle on the Fibonacci
lookup table grid. This quantization is performed by rounding the source elevation to
the nearest Fibonacci elevation, looking up the density of azimuths at that elevation,
and rounding the source azimuth to the nearest azimuth. Next, for each of the (N + 1)2

Ambisonic channels (i.e. SH functions), we retrieve the SH coefficient c0 corresponding to
the quantized source angle from the previous audio cycle and multiply it by each sample
of the source buffer. The resulting buffer, x0, corresponds to the current source buffer
encoded into the current Ambisonic channel. As we loop over the sources, we can sum
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(i.e. accumulate) each encoded source buffer into the same per-channel buffer, since SHD-
N can store sound fields as functions independent of the number of sources. Then, we
lookup the SH coefficient c1 corresponding to the quantized source angle in the Fibonacci
lookup table Ynm and multiply it by each sample of the source buffer, again accumulating
over the sources into a single buffer x1. We need to be sure to update the saved coefficient
c0 so that it can be retrieved during the next audio cycle.

Now, we have x0 and x1, the accumulated sound sources encoded into (N + 1)2

Ambisonic channels localized at angles corresponding to the previous and current audio
cycles, respectively. In order to convolve these with HRTFs, we must apply the overlap-
save method. This is performed by constructing per-channel sliding windows y0 and y1

of the encoded inputs x0 and x1. These windows must hold the most recent K samples
of each input. Next, K-point real-to-complex FFTs of both y0 and y1 are computed,
resulting in Y0 and Y1, respectively. Finally, convolution is performed via per-channel
element-wise complex multiplication of both Y0 and Y1 with the frequency-domain SH-
encoded left and right HRTFs HL,R

channel. These buffers, corresponding to the products of
Y0 and Y1 with HL,R

channel, are accumulated over the channels into the buffers accY L,R
0 and

accY L,R
1 , respectively.

accY L,R
0 , then, is the stereo frequency-domain buffer corresponding to each sound

source auralized at angles specified by the previous audio cycle. accY L,R
1 is the stereo

frequency-domain buffer corresponding to each sound source auralized at angles specified
by the current audio cycle. The last step is to crossfade these two buffers, in order
to create the illusion of sounds moving continuously through the space. Crossfading of
accY L,R

0 and accY L,R
1 is performed via the method described in [54], where shifted versions

of each buffer are added such that sinusoidal fade-out and fade-in amplitude envelopes
are applied once an inverse FFT is computed. This crossfading is described in Section
2.5.3 and is given by

outL,R = K[accY0 〈k〉K + accY1 〈k〉K + 1
2{accY1 〈k + P 〉K − accY0 〈k + P 〉K

+accY1 〈k − P 〉K − accY0 〈k − P 〉K}] (4.4)

where 〈·〉K denotes the K-periodic continuation of each spectra and P is the integer
multiplier that relates twice the block length B to the transform size K, i.e.:
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P = K

2B ∈ N. (4.5)

Finally, a K-point complex-to-real inverse FFT of outL,R is performed and the first
K −B samples are discarded since they are time-aliased. The remaining length-B stereo
buffer is transmitted to the audio callback for output to headphones.

Algorithm 1 SHD-N using FFT-based overlap-save convolution with frequency-domain
crossfading

1: for source= 1, 2, . . . ,numSources do
2: quantize source angle to Fibonacci lookup table grid
3: for channel=1, 2, . . . , (N + 1)2 do
4: c0 ← get SH coefficient corresponding to source angle from previous audio

cycle
5: x0 ← multiply c0 by each sample of the source buffer, accumulate over sources
6: c1 ← lookup SH coefficient in Ynm table with quantized source angle
7: x1 ← multiply c1 to each sample of the source buffer, accumulate over sources
8: c0 ← c1, update coefficient
9: end for

10: end for
11: for channel=1, 2, . . . , (N + 1)2 do
12: y0 ← append x0 to y0 and slide window to hold last K samples
13: Y0 ← K-point R2C FFT of y0
14: accY L,R

0 ← bin-by-bin complex multiply Y0 with HL,R
channel, accumulate over

channels
15: y1 ← append x1 to y1 and slide window to hold last K samples
16: Y1 ← K-point R2C FFT of y1
17: accY L,R

1 ← bin-by-bin complex multiply Y1 with HL,R
channel, accumulate over

channels
18: end for
19: outL,R ← crossfade accY L,R

0 and accY L,R
1 via Wefers, Vorlaender 2014 method [54]

20: outL,R ← K-point C2R IFFT of outL,R, only save last B samples

4.3.2 BI4C

Since bilinear interpolation of the four closest (BI4C) involves a simple weighted averaging
of the nearest HRTFs, it can be incorporated into block-based audio processing more
easily. For this thesis, we chose to benchmark BI4C by interpolation of a 30◦×15◦ mixed
equiangular grid of HRTF measurements, denoted as HL,R. Offline steps include loading
these Q frequency responses into a Q×K table. The online process of performing both
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BI4C and convolution with source signals is given in Algorithm 2. Here, we are also
interested in crossfading consecutive audio cycles to create the illusion of a continuously
moving source.

For each source, the first step is to determine the four nearest measured HRTFs stored
in HL,R. This is done by simply rounding the query angle in four directions (up and
down in both azimuth and elevation) such that the four resulting angles correspond to
measurements in HL,R. The next step is to determine the relative position of the query
angle in the rectangle specified by the four closest HRTFs. An efficient way to do this is to
choose a coordinate system such that the four corners of the rectangle correspond to the
Euclidean points (0, 0), (0, 1), (1, 0), (1, 1) and locate the query angle in this unit square.
If the relative position of the query angle in the unit square is given as (qx, qy) ∈ [0, 1]2,
the scalar interpolation weights can be given as

w0,0 = (1− qx)(1− qy) (4.6)

w0,1 = (1− qx)qy (4.7)

w1,0 = qx(1− qy) (4.8)

w1,1 = qxqy (4.9)

and the interpolation is performed as

HL,R
1 = w0,0H

L,R
0,0 + w0,1H

L,R
0,1 + w1,0H

L,R
1,0 + w1,1H

L,R
1,1 , (4.10)

where HL,R
0,0 , H

L,R
0,1 , H

L,R
1,0 and HL,R

1,1 are the stereo length-K four closest HRTFs located
at the points given by the subscripts after the unit square coordinate system has been
applied.

Once the interpolated frequency-domain HRTF is calculated, the overlap-save method
with frequency-domain crossfading must be applied. In order to crossfade the current
source auralized at angles specified by consecutive audio cycles, the interpolated HRTF
from the previous audio cycle HL,R

0 is retrieved. Next, the length-B source buffer is
appended to a per-source stream of source samples x, which is windowed to hold the
most recent K samples. A K-point real-to-complex FFT of x is performed, resulting
in X. To convolve the overlapped FFTed source buffer X with the interpolated HRTFs
HL,R

0 and HL,R
1 , element-wise complex multiplication of X with both HL,R

0 and HL,R
1 is
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performed, resulting in Y L,R
0 and Y L,R

1 , respectively. HL,R
1 is then stored for use during the

next audio cycle. The process of crossfading Y L,R
0 and Y L,R

1 is identical to the crossfading
given in Equation 4.4, where accY0 and accY1 have been replaced by Y L,R

0 and Y L,R
1 ,

respectively. As in Algorithm 1, a K-point complex-to-real inverse FFT of the crossfaded
frequency-domain stereo output buffer outL,R is computed and the last B samples are
sent to the audio callback for binaural output.

Algorithm 2 BI4C using FFT-based overlap-save convolution with frequency-domain
crossfading

1: for source= 1, 2, . . . ,numSources do
2: determine four nearest HRTFs by rounding query angle to four closest grid points
3: determine relative position of query angle within this 30◦ × 15◦ rectangle
4: compute the four interpolation weights based on this relative position
5: HL,R

1 ← average the four HRTFs using their corresponding weights, as in Equation
4.32

6: HL,R
0 ← retrieve interpolated HRTF from previous audio cycle

7: x← append source buffer to x and slide window to hold last K samples
8: X ← K-point R2C FFT of x
9: Y L,R

0 ← bin-by-bin complex multiply HL,R
0 by X, accumulate over sources

10: Y L,R
1 ← bin-by-bin complex multiply HL,R

1 by X, accumulate over sources
11: HL,R

0 ← HL,R
1 , update stored HRTF

12: end for
13: outL,R ← crossfade Y L,R

0 and Y L,R
1 via Wefers, Vorlaender 2014 method [54]

14: outL,R ← K-point C2R IFFT of outL,R, only save last B samples

4.4 Test System

4.4.1 Hardware

The test system is a 2020 13-inch MacBook Pro with an Apple M1 chip. The M1 chip
has an 8-core CPU with 4 performance cores and 4 efficiency cores with a maximum CPU
clock rate of 3.2 GHz. The system is equipped with 8 GB of RAM. Benchmark data for
an additional hardware platform, with an Intel i5 core, is given in Appendix A.
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4.4.2 Software

The operating system is macOS Big Sur Version 11.1. The code is written in C++ and
built using Xcode 12.5.1. Release mode binaries are generated with the flag -Ofast, which
corresponds to fastest, aggressive optimizations. Standard C++ memory buffers are used
as data structures where necessary. FFTs are computed using FFTW version 3.3.9. This
library is preferred because it is well-documented [61], among the fastest, and the source
code is available to the public.

4.5 Measurement Procedure

Both Algorithm 1 and Algorithm 2 were implemented in C++ on the test system
described. A common approach to benchmarking is to measure the time it takes for the
algorithm to complete for multiple, consecutive times in a loop. The runtime of the
algorithm is then computed by dividing the cumulative runtime by the number of loop
iterations. Usually, a fixed number of measurements at the beginning of each loop is
discarded, as these can be thought of as the system “warming up” to the algorithm. Let
Nwarm denote the number of iterations allotted to let the system warm up to the
algorithm and let Nper denote the number of iterations used to measure the
performance of the algorithm. Here, iterations correspond with audio cycles if this was
a real-time auralization engine. The benchmarking procedure used in this thesis is
shown in Algorithm 3. All clock times were sampled using the
chrono::high_resolution_clock function which is part of the C++ standard library.

Algorithm 3 Measurement procedure
1: for i = 1, . . . , Nwarm do
2: runAlgorithm();
3: end for
4: t1 = getTime();
5: for i = 1, . . . , Nper do
6: runAlgorithm();
7: end for
8: t2 = getTime();
9: t = (t2 − t1)/Nper

Each algorithm was measured for three different block lengths and nine different
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numbers of sources:
B = 256, 512, 1024, (4.11)

numSources = 1, 2, 5, 10, 20, 50, 100, 200, 500. (4.12)

Additionally, SHD-N was measured up to order 12:

N = 1, 2, 3, . . . , 12. (4.13)

The number of performance iterations Nper is based on 10 seconds of block-based audio
at a sample rate of 48 kHz:

Nper = 10s× 48kHz
B

(4.14)

where B is the block length. For this thesis, we have chosen FFT sizes K to always be
twice the block length B:

K = 2B.

In practice, K can be any integer multiple of 2B, as shown in Equation 2.40.

4.6 Results

The results of the experiments are given as the average of five measurements for each
configuration. In order to interpret the benchmarks, we have defined a Real-Time Factor
as the number of times faster a benchmark is than real-time. Real-time is defined as the
maximum amount of time we can spend on signal processing within an audio cycle in
order to finish in time for the next audio cycle. Since our performance loop count Nper is
defined normalized by the block length, as in Equation 4.14, Real-Time Factor is given
simply as the ratio of the simulation time to the computation time:

Real-Time Factor = Simulation Time
Computation Time (4.15)

For example, if we are simulating 10 seconds of auralization and all of the computation
necessary for this auralization is completed in 5 seconds, this would correspond to a Real-
Time Factor of 2. Accordingly, higher Real-Time Factors agree with faster algorithms.
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Figure 4.4: Computational performance of BI4C relative to SHD-N for N = 1, 2, . . . , 12
on the 2020 M1 MacBook Pro for different numbers of total sources. Both algorithms use
crossfading. The left column shows computation with single-precision arithmetic while
the right column is with double-precision arithmetic.
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Figure 4.5: Computational performance of BI4C relative to SHD-N for N = 1, 2, . . . , 12
on the 2020 M1 MacBook Pro for different numbers of total sources. Neither algorithm
uses crossfading. The left column shows computation with single-precision arithmetic
while the right column is with double-precision arithmetic.

Data for SHD-N and BI4C using FFT-based overlap-save convolution with frequency-
domain crossfading is shown in Figure 4.4, where results using single-precision arithmetic
are shown in the left column and results with double-precision arithmetic are shown in the
right column. The same data measured without any crossfading in either implementation
is shown in Figure 4.5.
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4.7 Discussion

In this section, we will attempt to provide insight into the results presented in the previous
section. While we have shown plots of many configurations of parameters, the basic
structure of each plot is roughly the same.

4.7.1 SHD-N

First, we notice the computational cost of SHD-N increases monotonically with
truncation order, as anticipated. This is expected because increasing order means
distributing more SH transformation coefficients to each sample of the source signals,
resulting in higher costs. Moreover, the spacing of the Real-Time Factor curves for
SHD-N decreases as order increases. This can be explained by the fact that increasing
the order from N − 1 to N results in the inclusion of 2N + 1 additional basis functions.
Since this quantity is a function of N , we would expect the computational cost relative
to the total simulation time to be increasingly larger as N increases. The definition of
Real-Time Factor as the ratio of simulation time to computation time, however, means
that the benchmarks will be decreasingly less times faster than real-time.

Next, we notice these curves tend towards a line as the number of sources increases.
For a numbers of sources less than 100, however, the marginal cost of adding a source is
lower. This is due to the larger influence of computational operations that are independent
of the number of sources. For example, since just (N + 1)2 convolutions are necessary
for an arbitrary number of sources, the cost imparted by the FFTs is independent of
the number of sources and dominates for lower numbers of sources. As we go to higher
numbers of sources, the FFT-related costs remain constant while the cost of encoding
additional sources into SHs begins to dominate.

4.7.2 BI4C

The computational cost to perform BI4C roughly increases with number of sources, which
is expected. All operations except the crossfading and the inverse FFT are dependent on
the number of sources. Therefore, the marginal cost of a source remains constant.
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4.7.3 Initial Behavior

Inspecting the initial behavior of the B = 256 plots for both BI4C and SHD-1, the first
few samples do not reflect the transient behavior of the operation of interest. The Real-
Time Factor for these samples is much lower than the expected values based on the other
plots. This can have several causes: most likely, the tables used in the operations are
not yet cached so cache misses are prolonging the execution. Another explanation could
be that the OS needs some time to schedule the processes efficiently. This behavior only
exists for the first measurements of the B = 256 data because of the batch processing
nature of the measurements.

4.7.4 Single vs. Double Precision Formats

The computational tradeoff between using single (32-bit) or double (64-bit) arithmetic
precision formats was examined for computing the least and most computationally
intensive benchmarks on the 2020 M1 MacBook Pro. For BI4C with crossfading, single
precision format was around 5% faster than its double precision counterpart for the
least intensive benchmark (B = 256, one source), which grew to around 27% for the
most intensive benchmark (B = 1024, 500 sources). For SHD-N with crossfading, single
precision format was around 14% faster than its double precision counterpart for the
least intensive benchmark (B = 256, one source, N = 1), which grew to around 48% for
the most intensive benchmark (B = 1024, 500 sources, N = 12). These tradeoffs might
be considered as well if computational resources are limited.

4.7.5 Relative Costs

It is clearly seen that BI4C outperforms any order of SHD for very low numbers of sources
in terms of the computational cost as defined in this thesis. The tradeoffs become more
complicated, however, above 10 total sources. Choosing the best HRTF interpolation
algorithm in terms of complexity will come down to the computational resources available
on the hardware platform of interest. For numbers of sources greater than 100, BI4C
is computationally comparable to order 4 or 5 SHD, depending on block length and
numerical precision. This knowledge should be combined with the results from Chapter
3 to make an informed choice about which algorithm is best suited for a platform. That
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said, the analysis here should not be substituted for dedicated benchmarks for specific
applications, as software and hardware implementation details matter greatly.



72

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, an overview of the performance tradeoffs of two algorithms for spatially
interpolating HRTFs was presented. These algorithms are interpolation via N -th order
spherical harmonic decomposition and bilinear interpolation of the four closest. The
main objective was to assist those interested in building auralization engines in choosing
between the two techniques. Other objectives were to provide insight into the minimum
density of HRTF measurement grids necessary to build perceptually-continuous HRTF
representations.

Two metrics were used for this comparison: relative quality of reconstruction according
to an error function and computational cost in an online scenario. The error function
was computed as a dB-scale difference of magnitude responses that are computed over a
perceptual frequency axis (the Bark scale). Reconstruction was performed at grid points
for SHD-N and halfway between grid points for BI4C since these locations correspond to
theoretical worst-case local reconstruction quality. Reconstruction error was compared
according to the spherical distribution of error as well as weighted average error. Results
indicate that the preferred algorithm is a function of the measurement grid and truncation
order used. However, BI4C gives better average reconstruction if only sparse grids are
available but gives less consistent spherical distribution of reconstruction.

The computational cost analysis was performed by benchmarking efficient C++
implementations of BI4C and SHD-N incorporated into a virtual acoustic rendering
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framework using block-based audio processing. This framework assumes that at each
audio cycle, a fixed number of source signals with associated query angle metadata are
to be auralized via object-based binaural audio. Here, auralization refers to rendering of
the direct acoustic path via filtering with HRTFs and aggregating all auralized sources
into a binaural output buffer. The FIR filtering was implemented via FFT-based
convolution incorporating the overlap-save method. Frequency-domain crossfading of
HRTFs used in adjacent audio cycles was also implemented to create the illusion of
sources moving continuously across the virtual space.

SHD-N was incorporated by quantizing the query angles to an SH coefficient lookup
table grid that was sampled to promote spherical uniformity as well as fast lookups. The
SH coefficients are then distributed to the source buffer samples and convolution with
SH-encoded HRTFs is performed per SH channel via frequency-domain multiplication.

BI4C was incorporated by rounding query angles in four directions to find the four
closest grid points, then computing bilinear weights and averaging the measured HRTFs
according to these weights. Each interpolated HRTF was convolved with the source
buffers via frequency-domain multiplication.

Results of the computational cost analysis indicate that BI4C can render a low number
of sources faster (numSources < 5) than most orders of SHD-N . However, as the number
of sources gets higher (> 5) the marginal cost of another source is higher for BI4C than
SHD-N . This is because the steps required for convolution in SHD-N are independent
of the number of sources, which is not true of BI4C. Still, it is difficult to draw broad
conclusions about the superiority of either algorithm in terms of computational cost since
the cost is a function of many variables, including block length B, SH truncation order
N , arithmetic precision, hardware, and more. Moreover, the analysis given here should
only be used as guidelines and should not be substituted for dedicated benchmarks in
specific applications since implementation details may return differing results.

5.2 Future Work

Many performance tradeoffs of these two algorithms were not addressed in this thesis. For
example, we have not quantitatively shown the cost associated with online SH coefficient
computation/interpolation or the storage and retrieval of a very dense grid of HRTFs so
that interpolation is not necessary.

Future work should incorporate subject-based listening tests to further validate the
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quality of each interpolation technique. Subjects could be asked to identify source angles
in the virtual space or to what extent a source sounds like it is coming from a certain
direction. Additionally, other tests could be used to validate the quality of the crossfading
used in this thesis.

Other future work could involve the same performance tradeoff analysis for other
HRTF interpolation techniques. These might include barycentric interpolation,
principal component analysis (PCA), or machine learning techniques. Moreover, a more
comprehensive overview of computation hardware could be done, including performance
on dedicated DSPs, MCUs, or FPGAs, as well as comparisons of SIMD instruction sets.
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Appendix A

Additional Benchmarks

Figures A.1 and A.2 show benchmark data, as developed in Chapter 4, for an early 2015
MacBook Pro. This machine contains a 2.7 GHz dual-core Intel Core i5 with 3MB of
shared L3 cache and 8GB of 1866MHz LPDDR3 on-board RAM.
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Figure A.1: Computational performance of BI4C relative to SHD-N for N = 1, 2, . . . , 12
on the 2015 i5 MacBook Pro for different numbers of total sources. Both algorithms use
crossfading. The left column shows computation with single-precision arithmetic while
the right column is with double-precision arithmetic.
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Figure A.2: Computational performance of BI4C relative to SHD-N for N = 1, 2, . . . , 12
on the 2015 i5 MacBook Pro for different numbers of total sources. Neither algorithm
uses crossfading. The left column shows computation with single-precision arithmetic
while the right column is with double-precision arithmetic.
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